Integration of Business Intelligence and Predictive Analytics for Student Success Based on Blockchain
Integrasi Business Intelligence dan Analitik Prediktif untuk Keberhasilan Mahasiswa Berbasis Blockchain
DOI:
https://doi.org/10.33050/tmj.v10i1.2389Abstract
In the digital era, education is undergoing a significant transformation, with predictive analytics becoming an important approach to increasing student success. Rapid advancements in technology have enabled institutions to collect and analyze diverse datasets, yet challenges remain in ensuring data accuracy, transparency, and reliability. This research explores the integration of blockchain technology to address data integrity challenges, with a focus on its application in predictive analytics. The objective is to enhance the reliability of student-related data while improving the effectiveness of academic performance predictions. Specifically, this research examines the relationship between Academic Performance Metrics (APM), Student Engagement Data (SED), Socioeconomic Factors (SEF), Blockchain-Enabled Data Integrity (BDI), and Predictive Algorithm Efficiency (PAE). Using the Partial Least Squares Structural Equation Modeling (PLS-SEM) method, data were collected through structured surveys and institutional records involving higher education students. The constructs were validated through measurement model testing before proceeding to structural path analysis. The results show the significant influence of socio-economic factors and blockchain-based data integrity on academic outcomes, while student engagement and predictive algorithm efficiency also demonstrate moderate effects. The study also identifies areas that require improvement in predictive models, particularly regarding the alignment of input variables with algorithm design. These findings emphasize the importance of leveraging technology to develop more equitable and effective educational strategies, while underscoring the need for continued improvements in construct design to increase the reliability and validity of models. This research contributes to the growing field of educational data science by offering a blockchain-enhanced framework for predictive analytics in education.
References
X. Wang, Y. Wang, and Y. Ye, “Subjective socioeconomic status predicts e-learning engagement in college students: the mediating role of perceived social support and self-efficacy,” European Journal of Psychology of Education, vol. 39, no. 2, pp. 1119–1134, 2024.
M. Shoaib, N. Sayed, J. Singh, J. Shafi, S. Khan, and F. Ali, “Ai student success predictor: Enhancing personalized learning in campus management systems,” Computers in Human Behavior, vol. 158, p.108301, 2024.
U. Rahardja, “Penerapan teknologi blockchain dalam pendidikan kooperatif berbasis e-portfolio,” Technomedia Journal, vol. 7, no. 3, pp. 354–363, 2022.
P. S. Kurup and S. A. Jeba, “A secure and efficient student performance prediction system based on blockchain and data mining technologies,” in Blockchain Intelligent Systems. CRC Press, 2024, pp. 209–227.
K. K. R. Indonesia. (2023) Pemanfaatan data analitik untuk penyajian informasi fiskal yang akurat. Diakses pada 4 Juni 2025. [Online]. Available: https://mediakeuangan.kemenkeu.go.id/article/show/pemanfaatan-data-analitik-untuk-penyajian-informasi-fiskal-yang-akurat
J. Williams, A. G. Prawiyogi, M. Rodriguez, and I. Kovac, “Enhancing circular economy with digital technologies: A pls-sem approach,” International Transactions on Education Technology (ITEE), vol. 2, no. 2, pp. 140–151, 2024.
A. Purwantinah and N. B. Kartiningsih, Dasar-Dasar Pemasaran untuk SMK/MAK Kelas X. Jakarta: Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi, 2023. [Online]. Available: https://static.buku.kemdikbud.go.id/content/pdf/bukuteks/kurikulum21/Dasar-Pemasaran-BS-KLS-X.pdf
B. Hellenborn, O. Eliasson, I. Yitmen, and H. Sadri, “Asset information requirements for blockchain based digital twins: a data-driven predictive analytics perspective,” Smart and Sustainable Built Environment, vol. 13, no. 1, pp. 22–41, 2024.
D.-C. Toader, C. M. R˘adulescu, G. Boca, R. Toader, D. Ighian, C. Toader et al., “The influence of blockchain technology adoption on the future of education,” in Conference Proceedings. The Future of Education 2024, 2024.
S. Brdnik, V. Podgorelec, and T. Heriˇcko, “Utilizing interaction metrics in a virtual learning environment for early prediction of students’ academic performance,” Proceedings http://ceur-ws. org ISSN, vol. 1613, p. 0073, 2022.
N. Azizah, G. P. Cesna, N. A. Santoso, Y. P. A. Sanjaya et al., “Blockchain technology evolution trends bibliometrics analysis on scopus database using vosviewer,” in 2022 IEEE Creative Communication and Innovative Technology (ICCIT). IEEE, 2022, pp. 1–6.
A. Khan and S. K. Ghosh, “Student performance analysis and prediction in classroom learning: A review of educational data mining studies,” Education and information technologies, vol. 26, no. 1, pp. 205–240, 2021.
J. L. Kamwela, J. Kilamlya, and M. A. Bingwe, “Impact of socioeconomic and demographic variables on student engagement in gambling activities: Insights from mkuranga district, tanzania,” African Journal of Empirical Research, vol. 5, no. 1, pp. 339–348, 2024.
R. Ridwansyah, M. Iqbal, H. Destiana, S. Sugiono, and A. Hamid, “Data mining berbasis machine learning untuk analitik prediktif dalam kelulusan,” SemanTIK: Teknik Informasi, vol. 10, no. 2, 2024.
A. Delhi, E. Sana, A. Bisty, and A. Husain, “Innovation in business management exploring the path to competitive excellence,” APTISI Transactions on Management, vol. 8, no. 1, pp. 58–65, 2024.
D. Martinez, L. Magdalena, and A. N. Savitri, “Ai and blockchain integration: Enhancing security and transparency in financial transactions,” International Transactions on Artificial Intelligence, vol. 3, no. 1, pp. 11–20, 2024.
F. Yusuf, R. Widayanti, S. R. Putri, and A. Wellington, “A comprehensive framework for enhancing blockchain security and privacy,” Blockchain Frontier Technology, vol. 4, no. 2, pp. 171–182, 2025.
J. Camacho-Morles, G. R. Slemp, R. Pekrun, K. Loderer, H. Hou, and L. G. Oades, “Activity achievement emotions and academic performance: A meta-analysis,” Educational Psychology Review, vol. 33, no. 3, pp. 1051–1095, 2021.
L. A. Lurie, M. P. Hagen, K. A. McLaughlin, M. A. Sheridan, A. N. Meltzoff, and M. L. Rosen, “Mechanisms linking socioeconomic status and academic achievement in early childhood: Cognitive stimulation and language,” Cognitive development, vol. 58, p. 101045, 2021.
E. Smith, N. A. Santoso, N. Azizah, E. D. Astuti et al., “Exploration of the impact of social media on children’s learning mechanisms,” Journal of Computer Science and Technology Application, vol. 1, no. 1, pp. 33–40, 2024.
L. Rohida and D. Sudiantini, “Transformasi manajemen sumber daya manusia pendidikan tinggi untuk meningkatkan kompetensi mahasiswa di era artificial intelligence,” SINERGI: Jurnal Riset Ilmiah, vol. 2, no. 4, pp. 2045–2055, 2025.
R. Salim, A. Adam, N. Silawane, R. R. Ali, Y. Mayabubun, and A. Dahlan, “Tingkat keberhasilan pembelajaran di perguruan tinggi:(analisis metode diskusi untuk meningkatkan keterampilan berpikir kritis),” JUANGA: Jurnal Agama Dan Ilmu Pengetahuan, pp. 83–94, 2023.
A. Selim, I. Ali, and B. Ristevski, “University information system’s impact on academic performance: A comprehensive logistic regression analysis with principal component analysis and performance metrics,” TEM JOURNAL-Technology, Education, Management, Informatics, 2024.
A. H. Aribathi, V. T. Devana et al., “Filsafat ilmu pengetahuan islam berbasis teknologi dalam perspektif epistemologi,” Alfabet Jurnal Wawasan Agama Risalah Islamiah, Teknologi dan Sosial, vol. 1, no. 1, pp. 1–15, 2021.
A. Ekawaty, E. A. Nabila, S. A. Anjani, U. Rahardja, and S. Zebua, “Utilizing sentiment analysis to enhance customer feedback systems in banking,” in 2024 12th International Conference on Cyber and IT Service Management (CITSM). IEEE, 2024, pp. 1–6.
I. Shantilawati, O. I. Suri, R. A. Sunarjo, S. A. Anjani, and D. Robert, “Unveiling new horizons: Ai-driven decision support systems in hrm-a novel bibliometric perspective,” Aptisi Transactions on Technopreneurship (ATT), vol. 7, no. 1, pp. 252–263, 2025.
C. F. Rodr´ıguez-Hern´andez, M. Musso, E. Kyndt, and E. Cascallar, “Artificial neural networks in academic performance prediction: Systematic implementation and predictor evaluation,” Computers and Education: Artificial Intelligence, vol. 2, p. 100018, 2021.
U. Chotijah, “Sistem audit teknologi informasi berdasarkan cobit untuk menilai level of maturity berbasis web,” Technomedia Journal, vol. 8, no. 3, pp. 26–49, 2024.
M. H. R. Chakim, D. Ahmad, U. Rusilowati, F. P. Oganda, Y. P. A. Sanjaya, and P. A. Sunarya, “Enhancing educational innovation: A comparative analysis of blockchain adoption strategies in smart learning environments,” in 2023 Eighth International Conference on Informatics and Computing (ICIC). IEEE, 2023, pp. 1–6.
A. Firasati, F. Azzahra, S. R. P. Junaedi, A. Evans, M. Madani, and F. P. Oganda, “The role information technology in increasing the effectiveness accounting information systems and employee performance,” International Journal of Cyber and IT Service Management, vol. 4, no. 2, pp. 114–121, 2024.
I. Aieni, C. Taurusta et al., “Rancang bangun game adventure 3d edukasi sampah organik dan nonorganik: Design and build an educational 3d adventure game on organic and non-organic waste,” Technomedia Journal, vol. 9, no. 1, pp. 61–75, 2024.
M. H. R. Chakim, P. A. Sunarya, V. Agarwal, I. N. Hikam et al., “Village tourism empowerment against in novation, economy creative, and social environmental,” Aptisi Transactions on Technopreneurship (ATT), vol. 5, no. 2sp, pp. 162–174, 2023.
A. Maulana, “Desain usulan strategi berdasarkan analisis multivariat asset management decision making untuk meningkatkan keberhasilan implementasi manajemen aset di pjbs,” Ph.D. dissertation, Universitas Islam Indonesia, 2024.
U. Rahardja, A. Sari, A. H. Alsalamy, S. Askar, A. H. R. Alawadi, and B. Abdullaeva, “Tribological properties assessment of metallic glasses through a genetic algorithm-optimized machine learning model,” Metals and Materials International, vol. 30, no. 3, pp. 745–755, 2024.
P. A. Sunarya, M. Asri, N. Azizah, C. P. Lim et al., “Evaluation of educational information systems or data and decision management: Evaluasi sistem informasi pendidikan untuk pengelolaan data dan keputusan,” Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi, vol. 3, no. 2, pp. 118–126, 2025.
R. H. Solehudin, Business Intelligence dan Analisis Kuantitatif-Damera Press. Damera Press, 2025.
U. Hasanah, S. Dinalestari Purbawati et al., Digitalisasi Akuntansi: Transformasi, Teknologi dan Tren. Jakad Media Publishing, 2024.
B. Any, T. Ramadhan, E. A. Nabila et al., “Decentralized academic platforms: The future of education in the age of blockchain,” Blockchain Frontier Technology, vol. 3, no. 2, pp. 112–124, 2024.
N. Mujahidah, P. N. Raudhah, R. R. A. Gusman, and A. Nurullah, “Responsibility accounting di era digital: Tantangan dan peluang dalam manajemen modern,” Jurnal Semesta Ilmu Manajemen dan Ekonomi, vol. 1, no. 4, pp. 672–689, 2025.
S. Septiani, P. Seviawani et al., “Penggunaan big data untuk personalisasi layanan dalam bisnis e-commerce,” ADI Bisnis Digital Interdisiplin Jurnal, vol. 5, no. 1, pp. 51–57, 2024.
R. Tarmizi, “Bab 3 blockchain dan keamanan finansial,” Manajemen Keuangan di Era Digital, vol. 27, 2024.
J. Heikal, V. Rialialie, D. Rivelino, and I. A. Supriyono, “Hybrid model of structural equation modeling pls and rfm (recency, frequency and monetary) model to improve bank average balance,” Aptisi Transactions on Technopreneurship (ATT), vol. 4, no. 1, pp. 1–8, 2022.
R. Khair, SISTEM INFORMASI MANAJEMEN (Inovasi dan Implementasi Berbasis Teknologi Terkini). umsu press, 2025.
M. Paramesha, N. L. Rane, and J. Rane, “Big data analytics, artificial intelligence, machine learning, internet of things, and blockchain for enhanced business intelligence,” Partners Universal Multidisciplinary Research Journal, vol. 1, no. 2, pp. 110–133, 2024.
R. Bucea-Manea-T, onis¸, O. M. Martins, R. Bucea-Manea-T, onis¸, C. Gheorghit, ˘a, V. Kuleto, M. P. Ili´c, and V.-E. Simion, “Blockchain technology enhances sustainable higher education,” Sustainability, vol. 13, no. 22, p. 12347, 2021.
S. Chinta, “Integrating artificial intelligence with cloud business intelligence: Enhancing predictive analytics and data visualization,” Iconic Research And Engineering Journals, vol. 5, no. 9, 2022.
R. Damayanti, H. Setiadi, P. Laksono, and J. Triyono, “Strategi analisis swot pada pengembangan website pusat studi: Dukungan diseminasi persebaran informasi: Swot analysis and research centre website development for supporting desimination and information spread out,” Technomedia Journal, vol. 9, no. 3,pp. 285–295, 2025.
S. Kumar, W. M. Lim, U. Sivarajah, and J. Kaur, “Artificial intelligence and blockchain integration in business: trends from a bibliometric-content analysis,” Information Systems Frontiers, vol. 25, no. 2, pp. 871–896, 2023.
D. Shah, D. Patel, J. Adesara, P. Hingu, and M. Shah, “Integrating machine learning and blockchain to develop a system to veto the forgeries and provide efficient results in education sector,” Visual computing for industry, biomedicine, and art, vol. 4, pp. 1–13, 2021.
O. A. Farayola, “Revolutionizing banking security: integrating artificial intelligence, blockchain, and business intelligence for enhanced cybersecurity,” Finance & Accounting Research Journal, vol. 6, no. 4,pp. 501–514, 2024.
E. Pebriyanti and O. Kusmayadi, “Brand ambassador and brand personality on decision to purchase nature republic in karawang,” APTISI Transactions on Management (ATM), vol. 6, no. 1, pp. 83–90, 2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Untung Rahardja, Mohamad Rakhmansyah, Surta Wijaya, Sheila Aulia Anjani, Mary Davies

This work is licensed under a Creative Commons Attribution 4.0 International License.