Utilizing Generative AI Models in Architectural Design An Innovative Approach

Authors

  • Yohana F. Cahya Palupi Meilani Universitas Pelita Harapan
  • Rohim Rohim Badan Riset dan Inovasi Nasional
  • Achmad Rozi Universitas Primagraha
  • Richard Andre Sunarjo Universitas Raharja
  • Kgomotso Moyo Mfinitee Group

DOI:

https://doi.org/10.33050/wg15r798

Keywords:

AI Technology, Architectural Design, Stable Diffusion, Design Process, visual Complexity

Abstract

In the context of modern architectural design that demands innovation, speed, and efficiency, the emergence of generative artificial intelligence (AI) introduces a new paradigm in the creative process. This technology enables architects to explore design ideas more rapidly and extensively through diffusion-based algorithms capable of producing complex architectural visuals in a short amount of time. This study aims to empirically evaluate the effectiveness and efficiency of generative AI models, particularly Stable Diffusion v2.1, in supporting the stages of ideation, sketching, and architectural modeling. The research employs both qualitative and quantitative approaches through a comparative experiment between manual design and AI-assisted design. Measurements were conducted using four main parameters: production time, visual complexity, rendering sharpness, and the number of design iterations. The results indicate that the generative AI model can accelerate production time by up to 35% greater efficiency compared to the manual method. Furthermore, the Visual Complexity Score (VCS) reached 8.5/10 for AI-generated designs and 6.2/10 for manual ones, with an increase in rendering resolution up to 450 PPI. However, limitations were observed in semantic interpretation and the model’s dependence on well-crafted prompts. This study concludes that the integration of generative AI in architectural design not only enhances the efficiency and effectiveness of the design process but also expands the creative potential of architects. The research contributes to the development of sustainable digital architecture and supports the achievement of SDG 9 (Industry, Innovation, and Infrastructure) and SDG 11 (Sustainable Cities and Communities). 

References

[1] M. Chen, S. Mei, J. Fan, and M. Wang, “Opportunities and challenges of diffusion models for generative ai,” National Science Review, vol. 11, no. 12, p. 781–0289, 2024.

[2] S. Yiannoudes, “Shaping architecture with generative artificial intelligence: Deep learning models in architectural design workflow,” Architecture, vol. 5, no. 4, p. 94, 2025.

[3] C. Li, T. Zhang, X. Du, Y. Zhang, and H. Xie, “Generative ai models for different steps in architectural design: A literature review,” Frontiers of Architectural Research, vol. 14, no. 3, p. 759–783, 2025.

[4] J. Siswanto, Hendry, U. Rahardja, I. Sembiring, E. Sediyono, K. D. Hartomo, and B. Istiyanto, “Deep learning-based lstm model for number of road accidents prediction,” in AIP Conference Proceedings, vol. 3234, no. 1. AIP Publishing LLC, 2025, p. 050004.

[5] M. Wen, D. Liang, H. Ye, and H. Tu, “Architectural facade design with style and structural features using stable diffusion model,” Journal of Intelligent Construction, vol. 2, no. 4, p. 9180034, 2024.

[6] M. Hakimshafaei, “Survey of generative ai in architecture and design,” –, 2023, unpublished thesis, accessed via eScholarship. [Online]. Available: https://escholarship.org/uc/item/47x6k9j8

[7] H. Ma, “Text semantics to image generation: A method of building facades design base on stable diffusion model,” arXiv preprint arXiv:2303.12755, 2023. [Online]. Available: https://arxiv.org/abs/2303.12755

[8] L. Lin, “Constrained design space explorations utilizing stable diffusion fine-tuned with lora as a case study,” SSRN, 2024. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract id=5134919

[9] M. He, Y. Liang, S. Wang, Y. Zheng, Q. Wang, D. Zhuang, L. Tian, and J. Zhao, “Generative ai for urban design: A stepwise approach integrating human expertise with multimodal diffusion models,” arXiv preprint arXiv:2505.24260, 2025. [Online]. Available: https://arxiv.org/abs/2505.24260

[10] Z. Ma, Y. Zhang, G. Jia, L. Zhao, Y. Ma, M. Ma, G. Liu, K. Zhang, J. Li, and B. Zhou, “Efficient diffusion models: A comprehensive survey from principles to practices,” arXiv preprint arXiv:2410.11795, 2024. [Online]. Available: https://arxiv.org/abs/2410.11795

11] Y. Cao, A. A. Aziz, and W. N. R. M. Arshard, “Stable diffusion in architectural design: Closing doors or opening new horizons?” –, 2025, sAGE Journals, ahead of print. [Online]. Available: https://journals.sagepub.com/doi/abs/10.1177/14780771241270257

[12] Q. Aini, D. Manongga, U. Rahardja, I. Sembiring, and Y.-M. Li, “Understanding behavioral intention to use of air quality monitoring solutions with emphasis on technology readiness,” International Journal of Human–Computer Interaction, vol. 41, no. 8, pp. 5079–5099, 2025.

[13] J. J. Pangaribuan. (2023) Generative artificial intelligence: Aplikasi dari generative ai (termasuk arsitektur). Accessed: Nov. 3, 2025. [Online]. Available: https://lmsspada.kemdiktisaintek.go.id

[14] C. Li, T. Zhang, X. Du, Y. Zhang, and H. Xie, “Generative ai models for different steps in architectural design: A literature review,” Frontiers of Architectural Research, vol. 14, no. 3, pp. 759–783, 2025.

[15] P. P. Tinggi, “Buku panduan – penggunaan generative ai pada pembelajaran di perguruan tinggi,” LLDIKTI3 Kemdikbud RI, 2024, pDF unduhan publik.

[16] D. Abbas, K. Siahaan, and M. Yusup, “Design thinking as a business model for empowering creative entrepreneurs in the digital era,” Startupreneur Business Digital (SABDA Journal), vol. 4, no. 2, p. 124–133, 2025.

[17] F. Hidranto, “Membangun ekosistem ai di indonesia untuk 2030: Potensi dan tantangan,” indonesia.go.id – Editorial, vol. –, no. –, 2024, akses publik via situs pemerintah.

[18] D. A. Fitriyanto and dkk, “Evolusi peran arsitek di era artificial intelligence dan teknologi berbasis data,” Jurnal Arsitektur TERRACOTTA, ITENAS, vol. 26, no. –, 2023, artikel mengenai AI dan arsitektur Indonesia.

[19] I. P. Gustiah and H. Newell, “Enhancing human resource management efficiency through scalable blockchain networks with an adaptive ai approach,” Startupreneur Business Digital (SABDA Journal), vol. 4, no. 2, p. 114–123, 2025.

[20] P. Li, B. Li, and Z. Li, “Sketch-to-architecture: Generative ai-aided architectural design,” arXiv preprint arXiv:2403.20186, 2024, preprint.

[21] D. K. K. Yogyakarta, “Pemanfaatan ai dalam produksi konten digital dan kompetisi kreatif ffk dan ffj 4/2025,” Artikel online, dinkominfosan.jogjakota.go.id, 2025, membahas AI generatif dalam industri kreatif Indonesia.

[22] F. Hibatulwafi, “Fenomena penggunaan generative ai dalam perilaku pengguna digital,” MP: Majalah Perpustakaan, Perpusnas RI, vol. –, no. –, 2024, artikel PDF tersedia via ejournal.perpusnas.go.id.

[23] D. R. Saputra, H. Nugroho, D. Julianingsih, and Z. Queen, “Understanding air pollution through machine learning: Predictive analytics for urban management,” IAIC Transactions on Sustainable Digital Innovation (ITSDI), vol. 6, no. 1, p. 75–85, 2024.

[24] K. RI, “Pengoperasian tools generative ai untuk konten digital dan bisnis,” Program pelatihan online, kemnaker.go.id, 2024, materi pelatihan AI generatif Indonesia.

[25] B. R. dan Inovasi Nasional (BRIN), “Brin kenalkan riset nlp, pemrosesan bahasa berbasis kecerdasan buatan,” berita online, brin.go.id, 2024, membahas riset AI di Indonesia.

[26] G. B. A. Wicaksana, L. P. Purwanti, R. R. Widjaja et al., “Model pendekatan eksploratif dan eksplanatori dalam studi kasus implementasi ai pada desain arsitektur,” Agora: Jurnal Penelitian dan Karya Ilmiah Arsitektur Usakti, vol. 23, no. 1, pp. 110–118, 2025.

[27] E. Ligia, K. Iskandar, I. Surajaya, M. Bayasut, O. Jayanagara, and K. Mizuno, “Cultural clash: Investigating how entrepreneurial characteristics and culture diffusion affect international interns’ competency,” APTISI Transactions on Technopreneurship, vol. 6, no. 2, p. 182–198, 2024.

[28] M. R. Mutawakkil, M. A. Asridal, M. T. Urinta, M. F. Anugrah et al., “Peran kecerdasan buatan dalam efisiensi desain bangunan,” in SEMINAR NASIONAL DIES NATALIS 62, vol. 1, 2023, pp. 152–157.

[29] Y. Rubiyanti, “Transformasi desain berkelanjutan dalam industri kreatif: Peran kecerdasan buatan dalam desain interior dan furniture ramah lingkungan,” in SENADA (Seminar Nasional Manajemen, Desain dan Aplikasi Bisnis Teknologi), vol. 8, 2025, pp. 128–140.

[30] C. Lukita, G. A. Pangilinan, Aliyah, M. H. R. Chakim, and D. B. Saputra, “Examining the impact of artificial intelligence and internet of things on smart tourism destinations: A comprehensive study,” APTISI Transactions on Technopreneurship, vol. 5, no. 2 Sp, p. 12–22, 2023.

[31] U. S. Nurfadhilah, M. H. Rahman, and W. Saputra, “Menyelami potensi kecerdasan buatan: Perspektif mahasiswa arsitektur dalam membangun masa depan desain,” JAUR (JOURNAL OF ARCHITECTURE AND URBANISM RESEARCH), vol. 8, no. 2, pp. 377–387, 2025.

[32] S. Jang and G. Lee, “Interactive design by integrating a large pre-trained language model and building information modeling,” arXiv preprint arXiv:2306.14165, 2023.

[33] J. Ko, J. Ajibefun, and W. Yan, “Experiments on generative ai-powered parametric modeling and bim for architectural design,” arXiv preprint arXiv:2308.00227, 2023.

[34] M. . Company, “The state of ai in 2023: Generative ai’s breakout year,” McKinsey Insights, 2023.

[35] C. Li and et al., “Generative ai-powered architectural exterior conceptual design: batch generation based on prompts,” Journal of Computational Design and Engineering, vol. 11, no. 5, p. 125–?, 2023.

[36] D. Onatayo, A. Onososen, A. O. Oyediran, H. Oyediran, V. Arowoiya, and E. Onatayo, “Generative ai applications in architecture, engineering, and construction: Trends, implications for practice, education imperatives for upskilling,” Architecture, vol. 4, no. 4, p. 877–902, 2023.

[37] et al. al., “Ai-driven generative design for next-generation 3d concrete printing in architecture,” EJASET – Journal of Artificial Systems Engineering and Technology, 2023.

[38] E. Nursanty and D. Rusmiatmoko, “Creating places of identity and social interaction: Examining the relationship between transit-oriented development and place making,” ALUR : Jurnal Arsitektur, vol. 6, no. 2, pp. 103–114, 2023.

[39] S. W. Dharmatanna, “Architectonic regionalisme dalam arsitektur osing,” ALUR : Jurnal Arsitektur, vol. 6, no. 2, pp. 115–126, 2023.

[40] E. M. Kamil, “Editorial vol.7 no.1 (2023),” Arsir : Jurnal Arsitektur, vol. 7, no. 1, pp. i–iii, 2023.

[41] J. Wongso, I. N. Tela, F. Roza, and R. Afrimayetti, “Kajian identifikasi kerusakan: Rumah gadang di perkampungan adat nagari sijunjung,” Arsir : Jurnal Arsitektur, vol. 7, no. 2, pp. 143–157, 2023.

[42] A. R. Z. Amin, “Identifikasi elemen arsitektur lokal pada fasad bangunan di palembang,” Arsir : Jurnal Arsitektur, vol. 7, no. 2, pp. 158–169, 2023.

[43] ——, “Identifikasi elemen arsitektur lokal pada fasad bangunan di palembang,” Arsir: Jurnal Arsitektur, vol. 7, no. 2, pp. 158–169, 2023.

[44] N. R. R. Amelia, A. Hayati, and M. Faqih, “Persepsi hunian subsidi berdasarkan penghuni di kota makassar,” Arsir: Jurnal Arsitektur, vol. 7, no. 2, pp. 183–197, 2023.

[45] A. A. Sunoto, “Analisa space syntax pada rumah susun lokbin rawa buaya jakarta barat,” Arsir: Jurnal Arsitektur, vol. 7, no. 2, pp. 198–211, 2023.

[46] R. K. Sary, M. A. Jaya, and R. Rizal, “Tinjauan faktor keamanan dan kenyamanan di sudirman walk palembang,” Arsir: Jurnal Arsitektur, vol. 7, no. 2, pp. 231–243, 2023.

[47] Y. B. Kristiawan and L. Purwanto, “Pendekatan digital pada proses desain arsitektur,” JoDA Journal of Digital Architecture, vol. 2, no. 2, pp. 24–32, 2023.

[48] Y. Cahyaningrum, D. E. Ramdhani, N. Noviyanti et al., “Pemanfaatan artificial intelligence (ai) untuk kustomisasi buku gambar panel dan elemen dekoratif keramik,” Jurnal Pustaka AI (Pusat Akses Kajian Teknologi Artificial Intelligence), vol. 5, no. 1, pp. 25–29, 2025.

[49] D. Gumulya, “Proses design thinking dengan dibantu generative artifical inteligence (gai),” PROSIDING SEMINASTIKA, vol. 5, no. 1, pp. 66–73, 2024.

[50] N. Azzahra, A. Salim, and A. D. N. Awalia, “Pengaruh kolaborasi dengan ai terhadap pengembangan pola pikir desain dan keterampilan reflektif mahasiswa,” Journal of Education, Culture, and Innovation, vol. 1, no. 1, pp. 23–32, 2025.

[51] O. Alvansyah, N. A. Yolandari, M. F. Zulfi, A. N. Nasution, and A. Perdana, “Inovasi perpustakaan digital dengan ai gemini 2.0 flash dan rekomendasi adaptif,” Jurnal Manajemen Informatika, Sistem Informasi dan Teknologi Komputer (JUMISTIK), vol. 4, no. 1, pp. 401–407, 2025.

[52] R. T. R. Bau, A. Hermila, S. Suhada, M. R. P. F. Idris, and R. K. Batalipu, “Rancang bangun chatbot budaya berbasis web menggunakan platform no-code dengan pendekatan user centered design,” Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI), vol. 8, no. 2, pp. 236–249, 2025.

[53] V. Fransisca, “Model chatbot generatif berdasarkan jaringan saraf dalam dengan optimasi hiperparameter untuk layanan pelanggan,” Mutiara: Multidiciplinary Scientifict Journal, vol. 1, no. 12, pp. 809–816, 2023.

[54] L. P. D. Satriani and I. N. T. A. Putra, “Perancangan dan pemodelan sistem kepatuhan cerdas umkm berbasis generative ai-ocr dengan pendekatan design thinking dan ucd,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 3S1, 2025.

Published

2025-10-31

Issue

Section

Artikel

How to Cite

Utilizing Generative AI Models in Architectural Design An Innovative Approach. (2025). Technomedia Journal, 10(2), 55-66. https://doi.org/10.33050/wg15r798