Analisis Sentimen Saran Pengguna Mandatory E-Learning Menggunakan Text Mining pada Learning Management System

Sentiment Analysis of User Suggestions for Mandatory E-Learning Using Text Mining on the Learning Management System

Authors

DOI:

https://doi.org/10.33050/tmj.v9i3.2368

Abstract

Mandatory E-learning is a required training for Ministry of Finance’s employees through Kemenkeu Learning Center (KLC) as LMS, where text-based recapitulation reports for participant’s feedback are not available due to large volume of participant’s evaluation data. Sentiment analysis using text mining is necessary to classify the feedback into positive, negative, and neutral labels, enabling the recapitulation process to be automated, faster, and more accurate. Using Knowledge Discovery in Databases (KDD) framework, the process involves data selection and manual labeling, text preprocessing (data cleansing, case folding, stop word removal, stemming, tokenizing, filtering tokens by length), data transformation (TF-IDF weighting, cosine similarity measurement, and resampling using random undersampling/RUS to reduce majority label). Modeling phase compares the best combination of algorithms covers Support Vector Machine (SVM), Multinomial Naïve Bayes, K-Nearest Neighbor (KNN), and Random Forest using a 90:10 training-to-testing data ratio. This research show that SVM with cosine similarity is the best algorithm scenario, achieving accuracy, precision, recall, and f1-score for negative label of 97.01\%, 96.22\%, 95.82\%, and 96.02\%, respectively, within 48.71 seconds, which \textbf{can be leveraged} to improve quality of e-learning’s report faster, more accurate, and to be automated.

References

F. Alifa et al., “Evaluasi learning management system (lms) berbasis web menggunakan moodle pada fakultas tarbiyah uin ar-raniry,” Evaluasi Learning Management System (LMS) Berbasis Web Menggunakan Moodle pada Fakultas tarbiyah UIN Ar-Raniry, vol. 4, no. 4, pp. 1–6, 2024.

H. P. Maulidina and F. A. Bachtiar, “Klasifikasi komentar pada pembelajaran e-learning menggunakan analisis sentimen dengan metode k-nearest neighbor,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, vol. 6, no. 5, pp. 2301–2307, 2022.

A. Yauma, I. Fitri, and S. Ningsih, “Learning management system (lms) pada e-learning menggunakan metode agile dan waterfall berbasis website,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 5, no. 3, pp. 323–328, 2021.

S. A. Anjani and I. A. Mutiara, “Mengintegrasikan teknologi blockchain dalam pendidikan tinggi: Meningkatkan transparansi dan keamanan dalam kredensial akademik,” ADI Pengabdian Kepada Masyarakat, vol. 5, no. 1, pp. 65–71, 2024.

B. Setiyadi, “Pemanfaatan dan pengelolaan teknologi informasi dan komunikasi dalam menunjang proses pembelajaran,” KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, vol. 3, no. 1, pp. 150–161, 2023.

A. Y. Setiawan, I. G. M. Darmawiguna, and G. A. Pradnyana, “Sentiment summarization evaluasi pembelajaran menggunakan algoritma lstm (long short term memory),” KARMAPATI (Kumpulan Artikel Mahasiswa Pendidikan Teknik Informatika), vol. 11, no. 2, pp. 183–191, 2022.

I. R. Munthe, A. P. Juledi et al., “Implementasi data mining algoritma apriori untuk meningkatkan penjualan,” Jurnal Teknik Informatika UNIKA Santo Thomas, vol. 6, no. 1, pp. 188–197, 2021.

M. Sholeh, S. Suraya, and D. Andayati, “Penerapan data mining pada model clustering data kuesioner mahasiswa terhadap kinerja dosen,” Jurnal Eksplora Informatika, vol. 13, no. 2, pp. 208–217, 2024.

W. Yustanti and N. Rochmawati, “Analisis algoritma klasifikasi untuk memprediksi karakteristik mahasiswa pada pembelajaran daring,” J. Edukasi dan Penelit. Inform, vol. 8, no. 1, pp. 57–61, 2022.

I. N. Ramadhan and K. ini berlisensi di bawah Creative, “Penerapan database redis sebagai optimalisasi pemrosesan kueri data pengguna aplikasi siresma berbasis laravel: Implementation of the redis database as optimization of user.”

I. A. Mutiara, A. Syamsuddin, M. Maharida, F. Napasti, and L. Hasnawati, “Instilling nationalism and sociopreneurship in young indonesian immigrants,” Aptisi Transactions on Technopreneurship (ATT), vol. 7, no. 1, pp. 37–47, 2025.

N. Permatasari and C. Karima, “Penerapan algoritma idris pada dokumen dengan menggunakan teks bahasa indonesia,” Jurnal Humaniora Teknologi, vol. 10, no. 2, pp. 80–88, 2024.

M. I. A. G. Wibowo and I. Pratama, “Analisis sentimen ulasan aplikasi identitas kependudukan digital menggunakan metode support vector machine,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 4, pp. 715–722, 2024.

R. Aprianto, C. Lukita, A. Sutarman, R. A. Sunarjo, R. N. Muti, and E. Dolan, “Facing global dynamics with effective strategy: A tasted organizational change management approach,” International Journal of Cyber and IT Service Management, vol. 5, no. 1, pp. 1–11, 2025.

Y. A. Sir, A. H. Soepranoto et al., “Pendekatan resampling data untuk menangani masalah ketidakseimbangan kelas,” J-ICON: Jurnal Komputer dan Informatika, vol. 10, no. 1, pp. 31–38, 2022.

A. Y. Taha, S. Tiun, A. H. Abd Rahman, and A. Sabah, “Multilabel over-sampling and under-sampling with class alignment for imbalanced multilabel text classification,” Journal of Information and Communication Technology, vol. 20, no. 3, pp. 423–456, 2021.

M. Toha, E. Anoh et al., “Strategi public relations dalam menangani pemberitaan negatif di media massa atas pengoperasian teknologi pionir indonesia.”

A. A. Viriya, I. S. E. Maghfiroh, and N. Y. Setiawan, “Analisis sentimen ulasan pengguna aplikasi mobile gapura ub pada google play store menggunakan algoritma support vector machine,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 3, 2024.

B. A. Maulana, M. J. Fahmi, A. M. Imran, and N. Hidayati, “Analisis sentimen terhadap aplikasi pluang menggunakan algoritma naive bayes dan support vector machine (svm): Sentiment analysis of pluang applications with naive bayes and support vector machine (svm) algorithm,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 375–384, 2024.

D. S. Soper, “Greed is good: Rapid hyperparameter optimization and model selection using greedy k-fold cross validation,”

Electronics, vol. 10, no. 16, p. 1973, 2021.

F. Riza, “Penggunaan text mining untuk klasifikasi tanggapan peserta pelatihan terhadap performa trainer menggunakan metode algoritma k-nearest neighbor,” ISMETEK, vol. 13, no. 2, 2022.

A. A. Annur, A. A. Murtopo, and N. Fadilah, “Analisis sentimen aplikasi e-learning quipper selama pandemi covid-19 dengan menggunakan metode support vector machine (svm),” Indonesian Journal of Informatics and Research, vol. 3, no. 2, pp. 9–17, 2022.

D. S. Utami and A. Erfina, “Analisis sentimen pinjaman online di twitter menggunakan algoritma support vector machine (svm),” in Prosiding Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra, vol. 1, 2021, pp. 299–305.

R. N. Mauliza and Y. R. Sipayung, “Penerapan text mining dalam menganalisis pendapat masyarakat terhadap pemilu 2024 pada media sosial x menggunakan metode naive bayes,” Technomedia Journal, vol. 9, pp. 1–16, 2024.

S. S. Wulandari, M. L. B. M. Diah, and A. Asari, “Digital proficiency and entrepreneurial mindset for sme success through market savvy and tech literacy,” Aptisi Transactions on Technopreneurship (ATT), vol. 7, no. 1, pp. 26–36, 2025.

N. Firdausy, I. Yuadi, and I. Puspitasari, “Analisis sentimen evaluasi reaksi e-learning menggunakan algoritma na¨ıve bayes support vector machine dan deep learning,” Techno. Com, vol. 22, no. 3, pp. 677–689, 2023.

A. Ekawaty, E. A. Nabila, S. A. Anjani, U. Rahardja, and S. Zebua, “Utilizing sentiment analysis to enhance customer feedback systems in banking,” in 2024 12th International Conference on Cyber and IT Service Management (CITSM). IEEE, 2024, pp. 1–6.

A. A. Nugraha and U. Budiyanto, “Adaptive e-learning system berbasis vark learning style dengan klasifikasi materi pembelajaran menggunakan k-nn (k-nearest neighbor),” Technomedia Journal, vol. 7, no. 2, pp. 248–261, 2022.

K. Okoye, A. Arrona-Palacios, C. Camacho-Zu˜niga, J. A. G. Achem, J. Escamilla, and S. Hosseini, “Towards teaching analytics: a contextual model for analysis of students’ evaluation of teaching through text mining and machine learning classification,” Education and Information Technologies, pp. 1–43, 2022.

R. D. Hadiwidjaja, A. I. Suroso, H. Siregar, and I. Sailah, “Performance paradigm: Entrepreneurial good university governance mediating leadership style in state universities,” Aptisi Transactions on Technopreneurship (ATT), vol. 6, no. 3, pp. 492–508, 2024

Published

2025-02-15

Issue

Section

Artikel

How to Cite

Analisis Sentimen Saran Pengguna Mandatory E-Learning Menggunakan Text Mining pada Learning Management System: Sentiment Analysis of User Suggestions for Mandatory E-Learning Using Text Mining on the Learning Management System. (2025). Technomedia Journal, 9(3), 346-359. https://doi.org/10.33050/tmj.v9i3.2368