Evaluasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan Metode Klasifikasi Algoritma C4.5
DOI:
https://doi.org/10.33050/tmj.v7i3.1932Abstract
The purpose of this study was to determine the effect of academic services on student satisfaction so that students do not feel disappointed with academic services. This study measures the level of student satisfaction with the existing academic services at Jenderal Achmad Yani University, Cimahi. The data set from the survey results of student satisfaction with academic services at Unjani is used to generate models, rules and accuracy scores for student satisfaction using the Decision Tree C4.5 algorithm data mining classification method, to see the results of the accuracy values of several attributes, namely tangible, empathetic, responsiveness. , reliability and assurance. The results of the tests carried out with the rapidminer application, the accuracy value of the 7 (Seven) Faculties testing at Unjani resulted in a value above 90%, which means that this value indicates that the service that has been running so far is considered very good. Testing student satisfaction surveys must of course be carried out continuously to be able to continue to improve academic services to students for the better.
References
N. Salman, “Algoritma k-Nearest Neighbor Berbasis Backward Elimination Pada Client Telemarketing,” in SISITI: Seminar Ilmiah Sistem Informasi dan Teknologi Informasi, 2019, vol. 8, no. 2, pp. 141–150.
A. Williams, C. S. Bangun, and Y. Shino, “The Urgency of Digital Literacy in Indonesia on COVID-19 pandemic,” Startupreneur Bisnis Digital (SABDA Journal), vol. 1, no. 2, pp. 183–190, 2022.
F. Ma’arif and T. Arifin, “Optimasi Fitur Menggunakan Backward Elimination Dan Algoritma SVM Untuk Klasifikasi Kanker Payudara,” Jurnal Informatika, vol. 4, no. 1, 2017.
U. Rahardja, “Social Media Analysis as a Marketing Strategy in Online Marketing Business,” Startupreneur Bisnis Digital (SABDA Journal), vol. 1, no. 2, pp. 176–182, 2022.
A. Salsabila, R. Yunita, and C. Rozikin, “Identifikasi Citra Jenis Bunga menggunakan Algoritma KNN dengan Ekstrasi Warna HSV dan Tekstur GLCM,” Technomedia Journal, vol. 6, no. 1, pp. 124–137, 2021.
D. P. Lazirkha, J. Hom, and V. Melinda, “Quality Analysis Of Digital Business Services In Improving Customer Satisfaction,” Startupreneur Bisnis Digital (SABDA Journal), vol. 1, no. 2, pp. 156–166, 2022.
D. A. R. Saragih, M. Safii, and D. Suhendro, “Penerapan Data Mining Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Sistem Informasi di Program Studi Sistem Informasi,” Journal of Information System Research (JOSH), vol. 2, no. 2, pp. 173–177, 2021.
M. Faid, M. Jasri, and T. Rahmawati, “Perbandingan Kinerja Tool Data Mining Weka dan Rapidminer Dalam Algoritma Klasifikasi. Teknika, 8 (1), 11–16.” 2019.
L. A. Rachman and H. Hasbullah, “Rancang Bangun Fearless (Fire Supression and Smart Alert System) pada Kebocoran Gas,” Technomedia Journal, vol. 7, no. 2, pp. 262–279, 2022.
E. Dolan, S. Kosasi, and S. N. Sari, “Implementation of Competence-Based Human Resources Management in the Digital Era,” Startupreneur Bisnis Digital (SABDA Journal), vol. 1, no. 2, pp. 167–175, 2022.
A. Ardiyansyah, P. A. Rahayuningsih, and R. Maulana, “Analisis Perbandingan Algoritma Klasifikasi Data Mining Untuk Dataset Blogger Dengan Rapid Miner,” Jurnal Khatulistiwa Informatika, vol. 6, no. 1, 2018.
A. Maharani, S. Aninda, and S. Millah, “Pembuatan Kartu Ujian Online Sebagai Pengabdian Perguruan Tinggi,” ADI Pengabdian Kepada Masyarakat, vol. 1, no. 2, pp. 8–14, 2021.
S. Amri, “Perbandingan Kerangka Model Klasifikasi untuk Pemilihan Metode Kontrasepsi dengan Pendekatan CRIPS-DM,” Information Science and Library, vol. 1, no. 1, pp. 14–23, 2020.
M. G. Pradana and P. H. Saputro, “KOMPARASI METODE NAÏVE BAYES DAN C4. 5 DALAM KLASIFIKASI LOYALITAS PELANGGAN TERHADAP LAYANAN PERUSAHAAN,” Indonesian Journal of Business Intelligence (IJUBI), vol. 3, no. 1, pp. 20–24, 2020.
T. Hariguna, Y. Durachman, M. Yusup, and S. Millah, “Blockchain Technology Transformation in Advancing Future Change,” Blockchain Frontier Technology, vol. 1, no. 01, pp. 13–20, 2021.
A. A. Nugraha and U. Budiyanto, “Adaptive E-Learning System Berbasis Vark Learning Style dengan Klasifikasi Materi Pembelajaran Menggunakan K-NN (K-Nearest Neighbor),” Technomedia Journal, vol. 7, no. 2 October, pp. 248–261, 2022.
M. Ramadhani and D. H. Murti, “Klasifikasi Ikan Menggunakan Oriented Fast and Rotated Brief (Orb) Dan K-Nearest Neighbor (Knn),” JUTI J. Ilm. Teknol. Inf, vol. 16, no. 2, p. 115, 2018.
T. Ayuninggati, N. Lutfiani, and S. Millah, “CRM-Based E-Business Design (Customer Relationship Management) Case Study: Shoe Washing Service Company S-Neat-Kers,” International Journal of Cyber and IT Service Management, vol. 1, no. 2, pp. 216–225, 2021.
M. Fansyuri, “ANALISA ALGORITMA KLASIFIKASI K-NEAREST NEIGHBOR DALAM MENENTUKAN NILAI AKURASI TERHADAP KEPUASAN PELANGGAN (STUDY KASUS PT. TRIGATRA KOMUNIKATAMA),” Jurnal Ilmiah Humanika, vol. 3, no. 1, pp. 29–33, 2020.
A. Muliawan, T. Badriyah, and I. Syarif, “Membangun Sistem Rekomendasi Hotel dengan Content Based Filtering Menggunakan K-Nearest Neighbor dan Haversine Formula,” Technomedia Journal, vol. 7, no. 2 October, pp. 231–247, 2022.
H. Nusantoro, P. A. Sunarya, N. P. L. Santoso, and S. Maulana, “Generation Smart Education Learning Process of Blockchain-Based in Universities,” Blockchain Frontier Technology, vol. 1, no. 01, pp. 21–34, 2021.
M. A. Rahman, N. Hidayat, and A. A. Supianto, “Komparasi Metode Data Mining K-Nearest Neighbor Dengan Naïve Bayes Untuk Klasifikasi Kualitas Air Bersih (Studi Kasus PDAM Tirta Kencana Kabupaten Jombang),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, vol. 2548, p. 964X, 2018.
D. Jonas, I. A. Supriyono, and H. Junianto, “Perancangan Sistem Pencegahan Pencurian Kendaraan Bermotor Berbasis ESP32 pada PT. Suwarna Dwipa Maju,” Technomedia Journal, vol. 7, no. 2 October, pp. 216–230, 2022.
P. Anantharaman and H. v Ramakrishan, “Notice of Retraction Data Mining Itemset of Big Data Using Pre-Processing Based on Mapreduce FrameWork with ETL Tools,” Aptikom Journal on Computer Science and Information Technologies, vol. 2, no. 2, pp. 57–62, 2017.
J. R. Luih, C. A. Haryani, and A. E. Widjaja, “Penerapan Teknologi Qr Code Berbasis Web pada Sistem Manajemen Inventaris di Gudang PT XYZ,” Technomedia Journal, vol. 7, no. 2 October, pp. 202–215, 2022.
K. Arora and M. Faisal, “The Use of Data Science in Digital Marketing Techniques: Work Programs, Performance Sequences and Methods.,” Startupreneur Bisnis Digital (SABDA Journal), vol. 1, no. 2, pp. 143–155, 2022.
U. Rahardja, Q. Aini, and S. Maulana, “Blockchain innovation: Current and future viewpoints for the travel industry,” IAIC Transactions on Sustainable Digital Innovation (ITSDI), vol. 3, no. 1, pp. 8–17, 2021.
F. Nasari and S. Darma, “Penerapan K-Means Clustering Pada Data Penerimaan Mahasiswa Baru,” Semin. Nas. Teknol. Inf. dan Multimed, pp. 73–78, 2015.
E. M. Haryono, I. Gunawan, A. N. Hidayanto, and U. Rahardja, “Comparison of the E-LT vs ETL Method in Data Warehouse Implementation: A Qualitative Study,” in 2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 2020, pp. 115–120.
B. Rawat, P. A. Sunarya, and V. T. Devana, “Digital Marketing as a Strategy to Improve Higher Education Promotion During the COVID-19 Pandemic,” Startupreneur Bisnis Digital (SABDA Journal), vol. 1, no. 2, pp. 114–119, 2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Tri Widiastuti, Koko Karsa, Christina Juliane

This work is licensed under a Creative Commons Attribution 4.0 International License.
 
						 
							






