Deteksi Ras Kucing Menggunakan Compound Model Scaling Convolutional Neural Network

Authors

  • Nadia Azahro Choirunisa Electronic Engineering Polytechnic Institute of Surabaya image/svg+xml
  • Tita Karlita Electronic Engineering Polytechnic Institute of Surabaya image/svg+xml
  • Rengga Asmara Electronic Engineering Polytechnic Institute of Surabaya image/svg+xml

DOI:

https://doi.org/10.33050/tmj.v6i2.1704

Abstract

Cat is one of a popular animals in the world. Number of cat breeds in the world only about 1%, so most are dominated by cats mixed or domestic cat. Nevertheless, there are so many different types of cat breeds in the world, that it is sometimes difficult to identify them. Therefore, we need a system that can recognize the types of cat breeds. One technique of deep learning that may apprehend and hit upon gadgets in a photograph is Convolutional Neural Network (CNN). CNN functionality is alleged because the nice technique in phrases of item detection and item recognition.  The author used 9 different types of cat breeds containing 2700 images. The EfficientNet-B0 architecture is used on the system. The most optimal model has earned the accuracy of 95%.

 

Keywords : Deep Learning, Convolutional Neural Network (CNN), Cat breeds, EfficientNet-B0.

References

L. Mariani, “Aplikasi Pendeteksian RAS Kucing Dengan Mendeteksi Wajah Kucing Dengan Metode Viola Jones Berbasis Android,” 2016.

I. N. Purnama, “HERBAL PLANT DETECTION BASED ON LEAVES IMAGE USING CONVOLUTIONAL NEURAL NETWORK WITH MOBILE NET ARCHITECTURE,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 6, no. 1, pp. 27–32, 2020.

W. Anggraini, “Deep Learning Untuk Deteksi Wajah Yang Berhijab Menggunakan Algoritma Convolutional Neural Network (CNN) Dengan Tensorflow.” UIN Ar-Raniry Banda Aceh, 2020.

I. Putra, “Klasifikasi citra menggunakan convolutional neural network (CNN) pada caltech 101.” Institut Teknologi Sepuluh Nopember, 2016.

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International Conference on Machine Learning, 2019, pp. 6105–6114.

Ü. Atila, M. Uçar, K. Akyol, and E. Uçar, “Plant leaf disease classification using EfficientNet deep learning model,” Ecological Informatics, vol. 61, p. 101182, 2021.

T. Nurhikmat, “Implementasi deep learning untuk image classification menggunakan algoritma Convolutional Neural Network (CNN) pada citra wayang golek,” 2018.

K. O. Lauw, L. W. Santoso, and R. Intan, “Identifikasi Jenis Anjing Berdasarkan Gambar Menggunakan Convolutional Neural Network Berbasis Android,” Jurnal Infra, vol. 8, no. 2, pp. 37–43, 2020.

A. Salsabila, R. Yunita, and C. Rozikin, “Identifikasi Citra Jenis Bunga menggunakan Algoritma KNN dengan Ekstrasi Warna HSV dan Tekstur GLCM,” Technomedia Journal, vol. 6, no. 1, pp. 124–137, 2021.

N. P. L. Santoso, Y. Durachman, S. Watini, and S. Millah, “Manajemen Kontrol Akses Berbasis Blockchain untuk Pendidikan Online Terdesentralisasi,” Technomedia Journal, vol. 6, no. 1, pp. 111–123, 2021.

D. H. Fudholi et al., “Image Captioning with Attention for Smart Local Tourism using EfficientNet,” in IOP Conference Series: Materials Science and Engineering, 2021, vol. 1077, no. 1, p. 12038.

S. Indriyani, F. Sthevanie, and K. N. Ramadhani, “Pengenalan Ras Kucing Scottish Fold Menggunakan Metode Histogram Of Oriented Gradients Dan Jaringan Saraf Tiruan,” eProceedings of Engineering, vol. 6, no. 2, 2019.

S. Khatri, A. Rajput, S. Alhat, V. Gursal, and J. Deshmukh, “Image-Based Animal Detection and Breed Identification Using Neural Networks”.

H. S. Hopipah and R. Mayasari, “Optimasi Backward Elimination untuk Klasifikasi Kepuasan Pelanggan Menggunakan Algoritme k-nearest neighbor (k-NN) and Naive Bayes,” Technomedia Journal, vol. 6, no. 1, pp. 99–110, 2021.

P. P. P. Pangestu and R. Yusuf, “Implementasi Metode QINQ Pada Jaringan Metro Ethernet Untuk Memaksimalkan Penggunaan VLAN Menggunakan Teknologi GPON Studi Kasus: PT. Telkom Indonesia,” Technomedia Journal, vol. 6, no. 1 Agustus, 2021.

R. A. A. Rahman and A. Adhitya, “Perancangan Sistem Informasi Pengusulan Kenaikan Pangkat Berbasis Web Pada Korps Marinir TNI AL,” Technomedia Journal, vol. 6, no. 01 Agustus, 2021.

B. Basri and A. Qashlim, “Relay Kontrol Menggunakan Google Firebase dan Node MCU pada Sistem Smart Home,” Technomedia Journal, vol. 6, no. 01 Agustus, 2021.

R. Rosyid and M. A. W. Prasetyo, “Robot Peraga 12 Gerakan Pengaturan Lalu Lintas Berbasis Arduino Mega 2560,” Technomedia Journal, vol. 5, no. 2, pp. 193–205, 2021.

A. Roihan, N. Rahayu, and D. S. Aji, “Perancangan Sistem Kehadiran Face Recognition Menggunakan Mikrokomputer Berbasis Internet of Things,” Technomedia Journal, vol. 5, no. 2, pp. 155–166, 2021.

A. Setiadi, I. Handayani, and F. Fadilah, “Perancangan Aplikasi Fit Your Weight Untuk Menghitung Berat Badan Ideal Berbasis Android,” Technomedia Journal, vol. 5, no. 2, pp. 144–154, 2021.

Published

2021-11-08

How to Cite

Deteksi Ras Kucing Menggunakan Compound Model Scaling Convolutional Neural Network. (2021). Technomedia Journal, 6(2 Februari), 236-251. https://doi.org/10.33050/tmj.v6i2.1704