Implementasi CNN dan MediaPipe dalam Peningkatan Efektivitas Stretching pada Olahraga Futsal

Implementation of CNN and MediaPipe in Increasing the Effectiveness of Stretching in Futsal Sports

Authors

  • Vito Jericho Pradita University
  • Theresia Herlina Rochadiani Pradita University

DOI:

https://doi.org/10.33050/tmj.v9i3.2294

Abstract

This study aims to develop an effective Convolutional Neural Network (CNN) model in recognizing stretching
movements that are often performed by futsal players, with the aim of reducing the risk of injury. The dataset used
consists of 3000 images covering five types of movements: High Knees, Jumping Jacks, Lunge, Side Lunge, and Butt
Kicks. The data was taken from YouTube videos and processed to produce landmarks through MediaPipe technology. The CNN model was trained using the ”Adam” optimizer, with 50 epochs, a batch size of 8, and a learning rate of 0.001. The training results showed an accuracy of 94%, with the best performance on the Lunge and Jumping Jack movements, and adequate performance on other movements. The implementation of this model allows real-time monitoring of stretching movements, provides direct feedback to users, and helps futsal players in stretching with the right technique to avoid injury. This study shows that the CNN-based approach for stretching motion recognition in futsal is effective and reliable. Further
research is suggested to increase the amount of training data and explore different model architectures to strengthen the model’s generalization.

References

D. Pranata and N. Kumaat, “Pengaruh olahraga dan model latihan fisik terhadap kebugaran jasmani remaja: Literature review,” Jurnal Kesehatan Olahraga, vol. 10, no. 02, pp. 107–116, 2022.

A. Mahindru, P. Patil, and V. Agrawal, “Role of physical activity on mental health and well-being: A review,” Cureus, vol. 15, no. 1, 2023.

M. A. Syafruddin and A. Asri, “Pendidikan jasmani dan olahraga dalam membangun sdm di era revolusi industri 4.0,” Gelora: Jurnal Pendidikan Olahraga Dan Kesehatan IKIP Mataram, vol. 9, no. 2, pp. 61–67, 2022.

R. A. Wismashanti, “Komunikasi dalam platform online crowdfunding: Tinjauan literatur sistematis,” Technomedia Journal, vol. 8, no. 3, pp. 50–63, 2024.

A. Mulyadiono, “Pentingnya manajemen olahraga terhadap perkembangan prestasi dan pembinaan tim futsal sumur waru,” Jurnal Edukasimu, vol. 1, no. 3, 2021.

D. Widyono, S. Azhariyah et al., “Sistem informasi akademik sekolah futsal perboti menggunakan metode profile matching untuk rekomendasi pemain,” ARITO Journal: Academic Research in Informatics and Technology Operations, vol. 1, no. 1, pp. 1–11, 2024.

M. P. Azhar, A. Krisyanto, and S. Riyadi, “Pengaruh telerehabilitation self stretching terhadap doms pada peminat latihan beban di fitness center uns,” in PROSIDING SEMINAR NASIONAL KEGURUAN DAN PENDIDIKAN (SNKP), vol. 2, no. 1, 2024, pp. 231–233.

M. H. R. Chakim, R. T. Utami, T. W. Sitanggang, A. Tanjung, A. Rizky, and E. A. Beldiq, “Innovation behavior research: Global trends and emerging themes in entrepreneurial business practices,” Aptisi Transactions on Technopreneurship (ATT), vol. 6, no. 3, pp. 574–585, 2024.

S. Montalvo, D. Conde, M. Sanchez, P. Martinez, R. Trevizo, and G. Ibarra-Mejia, “Dynamic stretching improves muscle activation and pain pressure threshold but not isometric hand strength when compared to static stretching,” Journal of Physical Education and Sport, vol. 23, no. 2, pp. 293–300, 2023.

S. Purnama, “Perbandingan model latihan static stretching dan dynamic stretching dalam meningkatkan fleksibilitas dan kebugaran,” Jurnal Edukasimu, vol. 4, no. 2, 2024.

T. A. P. SURYA, “Perancangan sistem pendeteksi pose berjalan dan berlari sebagai pengenalan gerakan olahraga pada video menggunakan mediapipe,” 2023.

S. Dill, A. Ahmadi, M. Grimmer, D. Haufe, M. Rohr, Y. Zhao, M. Sharbafi, and C. H. Antink, “Accuracy evaluation of 3d pose reconstruction algorithms through stereo camera information fusion for physical exercises with mediapipe pose,” Sensors, vol. 24, no. 23, p. 7772, 2024.

A. B. Rizki and E. Zuliarso, “Klasifikasi teknik bulutangkis berdasarkan pose dengan convulutional neural network,” JURNAL ILMIAH INFORMATIKA, vol. 10, no. 02, pp. 96–101, 2022.

M. JH and C. HK, “Ensemble analysis for yoga poses.” Library of Progress-Library Science, Information Technology & Computer, vol. 44, no. 3, 2024.

R. A. Jasina, V. L. Santosoa, E. Tanuwijayaa, and N. Sugiantoa, “Pengembangan arsitektur vgg16 dan dcnn7 pada convolutional neural network dalam melakukan klasifikasi pose yoga,” 2023.

T. Tukino, M. Pratiwi, and S. Defit, “Deep learning based technical classification of badminton pose with convolutional neural networks,” ILKOM Jurnal Ilmiah, vol. 16, no. 1, pp. 76–86, 2024.

M. A. Harahap, D. Situngkir, A. Irfandi, I. M. Ayu, and C. A. K. Muda, “The difference of musculoskeletal disorders before and after workplace stretching exercise,” Journal of Vocational Health Studies, vol. 5, no. 2, pp. 126–132, 2021.

S. Sukmawati et al., “Development of quality instruments and data collection techniques,” Jurnal Pendidikan Dan Pengajaran Guru Sekolah Dasar (JPPGuseda), vol. 6, no. 1, pp. 119–124, 2023.

P. Atandoh, F. Zhang, D. Adu-Gyamfi, P. H. Atandoh, and R. E. Nuhoho, “Integrated deep learning paradigm for document-based sentiment analysis,” Journal of King Saud University-Computer and Information Sciences, vol. 35, no. 7, p. 101578, 2023.

K. A. Tanjaya, M. F. Naufal, and H. Arwoko, “Pilates pose classification using mediapipe and convolutional neural networks with transfer learning,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 9, no. 2, pp. 212–222, 2023.

F. D. Tanugraha, “Ta: Sistem pengenalan aktivitas manusia menggunakan long short-term memory dan mediapipe,” Ph.D. dissertation, Universitas Dinamika, 2022.

N. D. Girsang, “Literature study of convolutional neural network algorithm for batik classification,” Brilliance: Research of Artificial Intelligence, vol. 1, no. 1, pp. 1–7, 2021.

Z. Abidin, R. I. Borman, F. B. Ananda, P. Prasetyawan, F. Rossi, and Y. Jusman, “Classification of indonesian traditional snacks based on image using convolutional neural network (cnn) algorithm,” in 2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). IEEE, 2021, pp. 18–23.

L. Zhao and Z. Zhang, “A improved pooling method for convolutional neural networks,” Scientific Reports, vol. 14, no. 1, p. 1589, 2024.

Y. Li, M. Zhao, J. Mao, Y. Chen, L. Zheng, and L. Yan, “Detection and recognition of chinese porcelain inlay images of traditional lingnan architectural decoration based on yolov4 technology,” Heritage Science, vol. 12, no. 1, p. 137, 2024.

U. Rahardja and Q. Aini, “Evaluating the effectiveness of digital marketing campaigns through conversion rates and engagement levels using anova and chi-square tests,” Journal of Digital Market and Digital Currency, vol. 2, no. 1, pp. 26–45, 2025.

M. S. Hossain, R. C. Ho, and G. Trajkovski, Handbook of Research on AI and Machine Learning Applications in Customer Support and Analytics. IGI Global, 2023.

L. A. Riyadi, “Implementasi model arsitektur vgg-19 dalam mengklasifikasi kanker serviks melalui citra pemeriksaan pap smear,” Ph.D. dissertation, Universitas Muhammadiyah Malang, 2024.

A. B. Prakosa, “Implementasi model deep learning convolutional neural network (cnn) pada citra penyakit daun jagung untuk klasifikasi penyakit tanaman,” Jurnal Pendidikan Teknologi Informasi (JUKANTI), vol. 6, no. 1, pp. 107–116, 2023.

A. Alsayed, A. Alsabei, and M. Arif, “Classification of apple tree leaves diseases using deep learning methods,” International Journal of Computer Science & Network Security, vol. 21, no. 7, pp. 324–330, 2021.

M. L. Bangun Permadi and R. Gumilang, “Penerapan algoritma cnn (convolutional neural network) untuk deteksi dan klasifikasi target militer berdasarkan citra satelit.” Journal of Social & Technology/Jurnal Sosial dan Teknologi (SOSTECH), vol. 4, no. 2, 2024.

L. A. S. I. Akbar, B. Kanata et al., “Klasifikasi genus tanaman anggrek menggunakan convolutional neural network (cnn) dengan menggunakan arsitektur vgg 16,” Jurnal Informatika Teknologi dan Sains (Jinteks), vol. 6, no. 4, pp. 820–829, 2024.

F. M. Fajar et al., “Analisis sentimen kurikulum merdeka dengan penerapan convolutional neural network,” Journal Automation Computer Information System, vol. 4, no. 1, pp. 1–11, 2024.

P. Y. Andrean, F. Bimantoro, and R. P. Rassy, “Informatics engineering.”

A. Felix, S. J. Salim, J. M. Karsten et al., “Pemanfaatan teknologi layanan fine dining untuk meningkatkan customer experience dan influence satisfaction: Utilization of fine dining service technology to improve customer experience and influence satisfaction,” Technomedia Journal, vol. 8, no. 3, pp. 420–433, 2024.

Published

2025-02-23

How to Cite

Jericho, V., & Rochadiani, T. H. (2025). Implementasi CNN dan MediaPipe dalam Peningkatan Efektivitas Stretching pada Olahraga Futsal: Implementation of CNN and MediaPipe in Increasing the Effectiveness of Stretching in Futsal Sports. Technomedia Journal, 9(3), 387–398. https://doi.org/10.33050/tmj.v9i3.2294

Issue

Section

Artikel