Penerapan Algoritma K-Means Clustering Dalam Pengelompokkan Kepadatan Penduduk
Application of K-Means Clustering Algorithm in Population Density Grouping
DOI:
https://doi.org/10.33050/tmj.v9i3.2270Abstract
Uneven population density will have a negative impact if not considered. One way to tackle this problem is with population equity management planning policies. This research focuses on clustering population density areas, which is the ratio between population and area in Central Sulawesi Province. This research clustering is applied with data mining techniques, namely K-Means Clustering. The research stages are data collection, data understanding, data processing, clustering, clustering review, dashboard analysis, and accuracy testing with the tableau application in providing visualization of population density in the region. Based on the results of the algorithm calculation, it produces three clusters, cluster 0 being low population density, cluster 1 being high population density, and cluster 2 being medium population density. Cluster formation is based on the visualization produced by the research dataset through Sum Of Square Error analysis, silhouette coefficient, and elbow method. Clustering is formed, followed by dashboard visualization with the tableau application. The clustering results, based on the SSE calculation, produce a value of 4324505738.747303, meaning the determination of the number of clusters with a significant difference with the calculation of the number of previous groupings. Then the results of the silhouette analysis provide the highest average silhouette value at the number of clusters, namely 3 with a value of 0.6144435666457168, and the elbow method gives the result that the elbow point is at point 3, meaning the optimum number of clusters with 3 clusters.
References
D. Yunianto, “Analisis pertumbuhan dan kepadatan penduduk terhadap pertumbuhan ekonomi,” FORUM EKONOMI, vol. 23, no. 4, pp. 687–698, 2021. [Online]. Available: http://journal.feb.unmul.ac.id/index. php/FORUMEKONOMI
B. P. S. Tengah, “Hasil sensus penduduk 2020 provinsi sulawesi tengah,” 2021, accessed: Mar. 18, 2024. [Online]. Available: https://sulteng.bps.go.id/pressrelease/2021/01/21/936/ hasil-sensus-penduduk-2020-provinsi-sulawesi-tengah.html
L. Y. Hutabarat, I. Gunawan, I. Purnamasari, M. Safii, and W. Saputra, “Penerapan algoritma k-means dalam pengelompokan jumlah penduduk berdasarkan kelurahan di kota pematangsiantar,” Jurnal Ilmu Komputer dan Teknologi, vol. 2, no. 2, pp. 20–26, 2021. [Online]. Available: http://creativecommons.org/licences/by/4.0/
H. R. Ngemba, S. Hendra, and I. G. N. A. K. D. Arsana, “Implementasi enkripsi data md5 dan sha-256 pada sistem informasi peminjaman buku tanah,” Techno.COM, vol. 22, no. 3, pp. 654–664, 2023.
N. Oktaviany, N. Suarna, and W. Prihartono, “Implementasi algoritma k-means clustering dalam mengelompokkan kepadatan penduduk di provinsi dki jakarta,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 119–126, 2024.
P. Marpaung, I. Pebrian, and W. Putri, “Penerapan data mining untuk pengelompokan kepadatan penduduk kabupaten deli serdang menggunakan algoritma k-means,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 6, no. 2, pp. 64–70, 2023.
A. A. Arifiyanti, F. S. Darusman, and B. W. Trenggono, “Population density cluster analysis in dki jakarta province using k-means algorithm,” Journal of Information Systems and Informatics, vol. 4, no. 3, 2022. [Online]. Available: http://journal-isi.org/index.php/isi
K. H. Kirana, M. Iryanti, M. G. Nugraha, E. Agustine, and D. Fitriani, “Application of k-means cluster analysis for magnetic susceptibility zoning of urban topsoil in bandung city,” in Journal of Physics: Conference Series. Institute of Physics, 2022.
M. Muttaqin, “Cluster analysis using k-means method to classify sumatera regency and city based on human development index indicator,” Seminar Nasional Official Statistics, vol. 2022, no. 1, pp. 967–976, 2022.
Y. D. Putra, M. Sudarma, and I. B. A. Swamardika, “Clustering history data penjualan menggunakan algoritma k-means,” Majalah Ilmiah Teknologi Elektro, vol. 20, no. 2, p. 195, 2021.
F. A. Fernaldy, A. A. Arifiyanti, and D. S. Y. Kartika, “Klasterisasi tracer study alumni universitas xyz menggunakan algoritma k-means,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 1, 2025.
R. B. Sippan and N. Setiyawati, “Pemetaan dan klasterisasi daerah rawan bencana alam di provinsi sulawesi tengah menggunakan k-means,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 10, no. 2, pp. 1031–1045, 2025.
L. P. Refialy, H. Maitimu, and M. S. Pesulima, “Perbaikan kinerja clustering k-means pada data ekonomi nelayan dengan perhitungan sum of square error (sse) dan optimasi nilai k cluster,” Techno.COM, vol. 20, no. 2, pp. 321–329, 2021.
M. A. Subhartha and M. K. S. Budhi, “Pengaruh infrastruktur terhadap pertumbuhan ekonomi provinsi sulawesi tengah,” Public Service and Governance Journal, vol. 6, no. 1, pp. 143–163, 2025.
R. Hidayati, A. Zubair, A. H. Pratama, and L. Indana, “Analisis silhouette coefficient pada 6 perhitungan jarak k-means clustering,” Techno.COM, vol. 20, no. 2, pp. 186–197, 2021.
T. Santhi, A. M. Sari, D. K. A. M. Putra, G. S. Mahendra, and M. P. Ariasih, “Implementasi business intelligence menggunakan tableau untuk visualisasi prediksi kelulusan mahasiswa,” Jurnal Software Engineering and Information System (SEIS), vol. 3, no. 2, pp. 51–58, 2023. [Online]. Available: https://ejurnal.umri.ac.id/index.php/SEIS/index
M. Rahman, M. K. F. Fili et al., “Analisis hasil rekapitulasi pilkada daerah khusus jakarta (dkj) 2024 menggunakan metode support vector machine,” JICode: Jurnal Informatika dan Komputer, vol. 2, no. 1, pp. 100–111, 2025.
I. Maria, S. V. Sihotang, R. A. Sunarjo, and A. W. Handaru, “Pemberdayaan komunitas melalui pelatihan pengelolaan keuangan sederhana untuk kesejahteraan ekonomi,” ADI Bisnis Digital Interdisiplin Jurnal, vol. 5, no. 2, pp. 33–40, 2024.
L. P. Refialy, H. Maitimu, and M. S. Pesulima, “Perbaikan kinerja clustering k-means pada data ekonomi nelayan dengan perhitungan sum of square error (sse) dan optimasi nilai k cluster,” Techno.COM, vol. 20, no. 2, pp. 321–329, 2021.
V. A. Ekasetya and A. Jananto, “Klusterisasi optimal dengan elbow method untuk pengelompokan data
kecelakaan lalu lintas di kota semarang,” Dinamika Informatika, vol. 12, no. 1, pp. 20–28, 2020.
R. Hidayati, A. Zubair, A. H. Pratama, and L. Indana, “Analisis silhouette coefficient pada 6 perhitungan jarak k-means clustering,” Techno.COM, vol. 20, no. 2, pp. 186–197, 2021.
I. Geospasial, “Download shapefile batas desa data kependudukan tahun 2019 seluruh indonesia,” 2019, accessed: Mar. 18, 2024. [Online]. Available: https://drive.google.com/open?id= 1v2rEPfN7x-XYWhNslvBiLuu4y7ZSwcSQ
T. Santhi, A. M. Sari, D. K. A. M. Putra, G. S. Mahendra, and M. P. Ariasih, “Implementasi business intelligence menggunakan tableau untuk visualisasi prediksi kelulusan mahasiswa,” Jurnal Software Engineering and Information System (SEIS), vol. 3, no. 2, pp. 51–58, 2023. [Online]. Available: https://ejurnal.umri.ac.id/index.php/SEIS/index
L. Community, “What are the methods for handling outliers in data mining?” 2024, accessed: Mar. 18, 2024. [Online]. Avail-
able: https://linkedin.com/advice/1/what-methods-handling-outliers-data-mining-skills-data-mining#: ∼:text=One%20way%20to%20handle%20outliers,%2C%20or%20clustering-based%20measures
S. A. Ramadhan and I. Musfiroh, “Review artikel: Verifikasi metode analisis obat,” Farmaka, pp. 87–92, 2021.
S. Soesmono, R. Pertiwi, B. Saputri, N. Putri, and E. Widodo, “Pengelompokan provinsi di indonesia berdasarkan tingkat pengangguran tahun 2023 menggunakan k-medoids: Pengelompokan provinsi di indonesia berdasarkan tingkat pengangguran tahun 2023 menggunakan k-medoids,” Emerging Statistics and Data Science Journal, vol. 3, no. 1, pp. 498–515, 2025.
A. Setiawan, “Box-plot: Memahami dan membuat box and whisker plots dalam eksplorasi data,” 2024, accessed: Mar. 18, 2024. [Online]. Available: https://www.smartstat.info/materi/statistika/eksplorasi-data/mengenal-box-plot-box-and-whisker-plots.html
D. C. Nabilla, “Analisis pengaruh indeks pembangunan manusia, produk domestik regional bruto, dan upah minimum kerja terhadap kemiskinan di provinsi daerah istimewa yogyakarta (2013-2022),” Ph.D. dissertation, Universitas Islam Indonesia, 2025.
N. P. L. Yashati and N. N. Yuliarmi, “Faktor penentu jumlah anak ideal di kecamatan kuta,” Jurnal Visi Manajemen, vol. 11, no. 1, pp. 87–106, 2025.
D. Yuliana and R. Rosyadi, “Pengaruh jumlah penduduk, investasi, dan indeks pembangunan manusia terhadap ketimpangan pendapatan di kalimantan barat,” Journal of Economics and Business UBS, vol. 14, no. 1, pp. 27–47, 2025.
Y. M. Wibowo and A. D. R. Sari, “Analysis of nitrite (no2¯) and nitrate (no3¯) levels in well water by viewing light spectrophotometer: Analisis kadar nitrit (no2¯) dan nitrat (no3¯) pada air sumur secara spektrofotometer sinar tampak,” Jurnal Kimia dan Rekayasa, vol. 5, no. 2, pp. 65–70, 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fenita Delia, Hajra Rasmita Ngemba, Syaiful Hendra, Syahrullah Syahrullah, Nouval Trezandy Lapatta

This work is licensed under a Creative Commons Attribution 4.0 International License.