Opinion Mining for Customer Satisfaction in Culinarypreneur Ventures Using Naive Bayes
DOI:
https://doi.org/10.33050/5mqgtb60Kata Kunci:
Sentiment Analysis, Naive Bayes, Information Gain (IG), Decision Tree, Genetic AlgorithmAbstrak
Examining consumer evaluations of food on social media provides relevant in- formation for anyone searching, especially immigrants and tourists. This infor- mation is also highly valuable for food stall owners and restaurant managers be- cause it helps them improve the quality of the food they serve based on customer feedback. However, sentiment analysis of food reviews often faces challenges due to inadequate data preprocessing, which leads to low classification accuracy. This study aims to improve sentiment recognition accuracy in food reviews by optimizing the feature attribute selection process in the classification model. The classification model employed in this research is Naive Bayes (NB), enhanced through a hybrid feature selection approach that combines the information gain (IG) algorithm and the genetic algorithm (GA). This combination is designed to maximize the selection of the most relevant feature attributes, thereby improving the model’s ability to identify positive, negative, and neutral sentiments in con- sumer food reviews on social media. The experimental results show that the hybrid IG-GA model achieved the highest accuracy rate of 93%, outperform- ing models that use individual algorithms. These findings demonstrate that the hybrid feature selection method effectively enhances the sentiment analysis performance of the Naive Bayes model. This study contributes to the develop- ment of food recommendation systems, the improvement of service strategies for culinary businesses, and supports the achievement of SDG 8 (Decent Work and Economic Growth) and SDG 9 (Industry, Innovation, and Infrastructure).
Referensi
[1] R. A. Sunarjo, D. Andayani, and C. T. Hua, “Organizational readiness and barriers to digital transformation in indonesian smes,” APTISI Transactions on Management (ATM), vol. 9, no. 3, pp. 244–254, 2025. [Online]. Available: https://doi.org/10.33050/atm.v9i3.2541
[2] J. Kim and S. Park, “Improving text mining accuracy with ig-ga hybrid feature selection in customer feedback analysis,” IEEE Access, vol. 10, pp. 60 542–60 558, 2022.
[3] Q. Aini, D. Manongga, U. Rahardja, I. Sembiring, and Y.-M. Li, “Understanding behavioral intention to use of air quality monitoring solutions with emphasis on technology readiness,” International Journal of Human–Computer Interaction, vol. 41, no. 8, pp. 5079–5099, 2025.
[4] U. Rahardja and Q. Aini, “Evaluating the effectiveness of digital marketing campaigns through conversion rates and engagement levels using anova and chi-square tests,” Journal of Digital Market and Digital Currency, vol. 2, no. 1, pp. 26–45, 2025.
[5] D. Putra, R. Ananda, and M. Sari, “Na¨ıve bayes classifier for culinary customer review sentiment analysis in indonesian smes,” Journal of Intelligent Systems Research, vol. 10, no. 2, pp. 211–226, 2022.
[6] J. Fern´andez, M. Lopez, and C. Serrano, “Sentiment analysis for customer satisfaction prediction in food delivery platforms,” Computers in Industry, vol. 140, p. 103713, 2022.
[7] U. Rahardja, E. A. Natalia, Q. Aini, T. S. Goh, and C. P. Lim, “Calculus driven creativepreneurship as an innovative economic solution for msmes: Kewirausahaan kreatif berbasis kalkulus sebagai solusi ekonomi inovatif untuk umkm,” ADI Pengabdian Kepada Masyarakat, vol. 5, no. 2, pp. 104–116, 2025.
[8] A. Jaya, D. Cahyono, and L. Maria, “Leveraging artificial intelligence for competitive advantage in indonesian smes,” APTISI Transactions on Management (ATM), vol. 9, no. 3, pp. 302–312, 2025. [Online]. Available: https://doi.org/10.33050/atm.v9i3.2524
[9] Y. Gao, P. Li, and X. Wu, “Hybrid feature extraction for opinion mining using information gain and evolutionary computation,” Information Processing & Management, vol. 59, no. 3, p. 102975, 2022.
[10] S. Kaur and M. Singh, “Feature selection using information gain and genetic algorithm for improved text classification,” Applied Soft Computing, vol. 123, p. 108946, 2022.
[11] N. Ahmed, S. Rahman, and R. Chowdhury, “Opinion mining for culinary customer satisfaction using machine learning techniques,” International Journal of Data Science and Analytics, vol. 16, no. 4, pp. 555–569, 2022.
[12] C. Lukita, A. W. A. Rahman, I. N. Hikam, and U. Rahardja, “Integrating strategic management with sdg 10 for sustainable development and equity,” Aptisi Transactions on Technopreneurship (ATT), vol. 7, no. 2, pp. 638–649, 2025.
[13] S. Choudhury and R. Das, “Sentiment analysis of restaurant reviews using hybrid machine learning models,” Journal of Hospitality Analytics, vol. 5, no. 1, pp. 77–94, 2022.
[14] L. Zhang, R. Wang, and J. Chen, “A hybrid na¨ıve bayes model with genetic algorithm for sentiment classification in restaurant reviews,” Expert Systems with Applications, vol. 199, p. 117148, 2022.
[15] A. Rizky, A. Gunawan, M. A. Komara, M. Madani, and E. Harris, “Combining the power of blockchain with gamification concepts to enhance customer engagement in culinary businesses,” Journal of Computer Science and Technology Application (CORISINTA), vol. 2, no. 1, pp. 93–100, 2024. [Online]. Available: https://journal.corisinta.org/corisinta/article/view/11
[16] H. Rahman and N. Islam, “Comparative analysis of na¨ıve bayes, svm, and knn for sentiment classification of food review datasets,” Procedia Computer Science, vol. 205, pp. 327–336, 2022.
[17] A. Hassan and A. Farouk, “A hybrid learning approach for sentiment analysis using tf-idf and na¨ıve bayes optimization,” Neural Computing and Applications, vol. 34, no. 19, pp. 16 427–16 439, 2022.
[18] Y. Liu, C. Zhao, and L. Tan, “Hybrid na¨ıve bayes–svm model for multilingual sentiment analysis in food review platforms,” Expert Systems with Applications, vol. 214, p. 119132, 2023
[19] L. Nono4D, “Augmented reality in preschool: Enhancing storytelling and learning motivation,” Journal of Computer Science and Technology Application (CORISINTA), vol. 2, no. 1, pp. 101–108, 2024.[Online]. Available: https://journal.corisinta.org/corisinta/article/view/104
[20] I. Sari, B. Nugraha, and D. Pratama, “Sentiment analysis of indonesian culinary reviews using na¨ıve bayes and tf-idf optimization,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 6, no. 1, pp.55–63, 2023.
[21] R. Gupta and A. Sharma, “Optimizing sentiment classification through information gain and genetic algorithm hybridization,” Applied Intelligence, vol. 53, no. 8, pp. 9220–9236, 2023.
[22] H. W. Wijaya and N. Hayati, “Natural language processing (nlp) for sentiment analysis of seblak bandung pedas kudus reviews,” JBASE-Journal of Business and Audit Information Systems, vol. 8, no. 1, 2025.
[23] H. Park and J. Lee, “Ai-based opinion mining for culinary customer experience enhancement,” Computers & Industrial Engineering, vol. 179, p. 109220, 2023.
[24] Q. Aini, U. Rahardja, and G. P. Cesna, “Hybrid feature selection in culinary opinion mining using na¨ıve bayes and genetic algorithm,” APTISI Transactions on Technopreneurship (ATT), vol. 6, no. 3, pp. 97108, 2023.
[25] A. Mardani, R. Dewi, and B. Kusuma, “Integrating na¨ıve bayes and tf-idf for culinary data sentiment mining in local food business,” Journal of Big Data Analytics in Applied Sciences, vol. 4, no. 2, pp.102–118, 2024.
[26] R. Singh and N. Patel, “Genetic algorithm-based na¨ıve bayes for customer review classification in hospitality industry,” IEEE Access, vol. 12, pp. 45 310–45 325, 2024.
[27] W. Huang and F. Chen, “Opinion mining and customer behavior insights using hybrid machine learning models,” Information Processing & Management, vol. 61, no. 2, p. 103292, 2024.
[28] L. Wang, Z. Sun, and R. Fang, “Deep hybrid feature engineering for food review sentiment classification,”Neural Computing and Applications, vol. 35, pp. 12 439–12 453, 2023.
[29] D. A. Firmansah, N. Y. Setiawan, and D. E. Ratnawati, “Analisis ulasan pelanggan menggunakan na¨ıvebayes classifier pada plus coffee and space,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 3, 2025.
[30] A. A. S. Mohammad, A. M. Al-Ramadan, S. I. Mohammad, B. A. Oraini, A. Vasudevan, N. Alshdaifat, and M. F. A. Hunitie, “Customer sentiment analysis for food and beverage development in restaurants using ai in jordan,” Data and Metadata, vol. 4, p. 922, 2025. [Online]. Available:https://doi.org/10.56294/dm2025922
[31] Y. A. Singgalen, “Social network analysis and sentiment classification of robotic restaurant content using na¨ıve bayes classifier,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 4, pp. 1–10, 2024.[Online]. Available: https://doi.org/10.30865/klik.v4i4.1710
[32] M. Fitria, “Hybrid deep learning with glove and genetic algorithm for sentiment analysis of tweets related to the 2024 indonesian presidential election,” Sains dan Teknologi Informasi dan Komputer, vol. 7, no. 2, pp. 1–10, 2024. [Online]. Available: https://doi.org/10.31294/sji.v7i2.8467
[33] N. Pleerux and A. Nardkulpat, “Sentiment analysis of restaurant customer satisfaction during covid-19 pandemic in pattaya, thailand,” Heliyon, vol. 9, no. 11, p. e22193, 2023. [Online]. Available: https://doi.org/10.1016/j.heliyon.2023.e22193
[34] Y. A. Singgalen, “Social network analysis and sentiment classification of robotic restaurant content using na¨ıve bayes classifier,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 4, pp. 1–10, 2024. [Online]. Available: https://doi.org/10.30865/klik.v4i4.1710
[35] R. Zhao, Y. Hao, and X. Li, “Business analysis: User attitude evaluation and prediction based on hotel user reviews and text mining,” arXiv preprint arXiv:2412.16744, 2024. [Online]. Available:https://arxiv.org/abs/2412.16744
[36] D. Rukmana, “Sentiment classification of customer reviews in the fast food industry using na¨ıve bayes algorithm,” Jurnal Teknologi dan Sistem Komputer, vol. 13, no. 2, pp. 149–154, 2025. [Online].Available: https://doi.org/10.22146/jtsiskom.2766
[37] O. Shafiezad, “Sentiment analysis of berlin tourists’ food quality reviews,” MDPI Open Access Journals, vol. 5, no. 4, p. 78, 2024. [Online]. Available: https://doi.org/10.3390/2673-5768/5/4/78
[38] R. S. Kamath, M. Kaushik, and M. Ramakrishna, “Opinion mining using ensemble model for restaurant feedback analysis,” Discover Computing, vol. 28, no. 1, p. 125, 2025.
[39] Y. G¨unes¸ and M. Arıkan, “X (twitter) sentiment analysis based on hybrid approach: An application for online food ordering,” Bilis¸im Teknolojileri Dergisi, vol. 18, no. 2, pp. 143–167, 2025.
[40] C. M. S. Ramdani, A. N. Rachman, and R. Setiawan, “Comparison of the multinomial naive bayes algorithm and decision tree with the application of adaboost in sentiment analysis reviews pedulilindungi application,” IJISTECH (International Journal of Information System and Technology), vol. 6, no. 4, pp.419–430, 2022.
[41] A. Khosin, U. Shukla, and H. Kaur, “Analysis of sentiment using machine learning algorithms,” in AIPConference Proceedings, vol. 3260, no. 1. AIP Publishing LLC, 2025, p. 020009.
[42] B. W. Andrian, F. A. T. Tobing, I. Z. Pane, and A. Kusnadi, “Implementation of na¨ıve bayes algorithm in sentiment analysis of twitter social media users regarding their interest to pay the tax,” International Journal of Science, Technology & Management, vol. 4, no. 6, pp. 1733–1742, 2023.
[43] R. N. Patil, Y. P. Singh, S. A. Rawandale, and S. Singh, “Improving sentiment classification on restaurant reviews using deep learning models,” Procedia Computer Science, vol. 235, pp. 3246–3256, 2024.
[44] A. Anita, D. F. Y. L. Gaol, M. D. S. Sipayung et al., “Application of data mining using the na¨ıve bayes classifier method to analyze the level of customer satisfaction in ice cream mixue,” Jurnal Sistem Informasi dan Ilmu Komputer, vol. 7, no. 1, pp. 88–95, 2023.
[45] E. Calvin and A. Nugroho, “Klasifikasi kualitas kepuasan pelanggan pada cold n brew coffee menggunakan algoritma naive bayes,” Jurnal Pendidikan Teknologi Informasi (JUKANTI), vol. 7, no. 2, pp.189–199, 2024.
[46] A. Afiyudin and R. Rochmoeljati, “Sentiment analysis and complaint patterns on gofood merchants using na¨ıve bayes and apriori,” Academia Open, vol. 10, no. 2, pp. 10–21 070, 2025.
[47] Z. D. P. Munaspin, N. M. Titiana, L. Tsabitah, D. A. Karima, K. D. Tania, and A. Meiriza, “Knowledge discovery terhadap sentimen pelanggan kopi kenangan menggunakan na¨ıve bayes,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 3, pp. 5303–5308, 2025.
[48] R. Sukwadi, R. M. Silitonga, M. M. Wahyuni, F. Octavian, Y.-T. Jou, and N. T. B. Thu, “Peningkatan kualitas layanan jaringan restoran cepat saji indonesia: Analisis sentimen dan emosi berbasis aspek,”Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 12, no. 2, pp. 359–368, 2025.
[49] H. Sakdiyah, “Analisis sentimen customer review brand kopi kenangan menggunakan metode naive bayes,” Ph.D. dissertation, Universitas Islam Negeri Maulana Malik Ibrahim, 2023.
[50] Y. A. Singgalen, “Analisis sentimen konsumen terhadap food, services, and value di restoran dan rumah makan populer kota makassar berdasarkan rekomendasi tripadvisor menggunakan metode crisp-dm dan servqual,” Build. Informatics, Technol. Sci, vol. 4, no. 4, pp. 1899–1914, 2023.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Hadi Cahyadi, Sri Rahayu, Noah Rangi

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.





