Implementation of Naive Bayes for Optimizing Asset Condition Classification in a Web-Based Information System

Penulis

  • Adhitya Pramana Putra Universitas Tadulako
  • Nouval Trezandy Lapatta Universitas Tadulako
  • Hajra Rasmita Ngemba Universitas Tadulako

DOI:

https://doi.org/10.33050/686nnx47

Kata Kunci:

Naive Bayes, Information Systems, Classification, Data Management, Feasibility

Abstrak

Improving the quality of work performance is an essential aspect for employees at the Office of Investment and Integrated One-Stop Services of Central Sulawesi Province. Many challenges remain in managing asset data, especially because the recording and monitoring processes are still performed manually. This manual approach often leads to inconsistencies, inefficiencies, and difficulties in determining asset eligibility. Therefore, an information system capable of supporting accurate and efficient data management is highly needed. The main objective of this study is to apply the Naive Bayes algorithm to classify asset conditions in a web-based system, enabling faster decision-making and improving the accuracy of asset feasibility assessments within government institutions. The dataset used in this study consists of three key attributes asset functionality, asset age, and physical condition. These attributes serve as indicators for classification using the Naïve Bayes probabilistic approach. The developed web-based application was evaluated through black-box testing to ensure that all system functions performed according to expectations and produced consistent outputs. Black-box testing results show that the system successfully provides correct outputs for each test scenario, verifying that the classification and data management processes operate properly. The application is able to classify assets into feasible or non-feasible categories based on calculated probabilities. Findings indicate that implementing the Naïve Bayes algorithm significantly improves the efficiency of asset data processing and enhances data management quality. The system also supports more objective decision-making regarding asset feasibility. This study demonstrates that probabilistic classification can be effectively integrated into governmental asset management systems to optimize operational performance.

Referensi

[1] M. L. I. Pratiwi and A. R. Santoso, “Na¨ıve bayes optimization for predictive asset maintenance in government it infrastructure,” Journal of Information Systems Engineering, vol. 7, no. 1, pp. 55–66, 2023.

[2] R. Gupta and S. Verma, “A comparative study of machine learning algorithms for classification tasks using real-world data,” International Journal of Computer Science and Applications, vol. 20, no. 2, pp. 101–110, 2023.

[3] J. I. Saputro, A. A. Rahmadani, D. M. Sriyono, H. Yuliyanto, and N. A. Silaban, “Human development and the business model impact of bitcoin transactions,” Blockchain Frontier Technology, vol. 2, no. 2, pp. 64–69, 2023.

[4] F. A. Nugroho, D. Setiawan, and M. Hatta, “Web-based asset management system using data mining classification techniques,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 3, pp. 455–463, 2023.

[5] Y. Chen and X. Zhao, “Enhanced na¨ıve bayes algorithm for multi-attribute classification in public sector data,” Applied Sciences, vol. 12, no. 15, pp. 1–15, 2022.

[6] I. A. Kurniawan, D. Yusman, and I. O. Aprilia, “Utilization of blockchain technology revolution in electronic id card data integrity,” APTISI Transactions on Management, vol. 5, no. 2, pp. 137–142, 2021.

[7] S. Perera and K. Fernando, “Evaluating machine learning algorithms for government inventory optimization,” International Journal of Advanced Computer Science, vol. 14, no. 4, pp. 50–61, 2023.

[8] D. R. Wijaya and R. Ramadhani, “Implementation of na¨ıve bayes classifier in determining infrastructure condition categories,” Jurnal Teknologi dan Sistem Komputer, vol. 11, no. 4, pp. 299–308, 2023.

[9] S. Rahayu, A. Setiadi, and A. Muryanto, “Perancangan sistem pendaftaran siswa baru secara online pada smk miftahul jannah cikupa,” Technomedia Journal, vol. 5, no. 2 Februari, pp. 235–247, 2021.

[10] M. Z. Ali and T. Rahman, “Predictive modelling for asset condition assessment using bayesian approaches,” Engineering Applications of Artificial Intelligence, vol. 127, pp. 106–115, 2023.

[11] P. K. Singh and S. Mandal, “An improved web-based monitoring framework for asset evaluation using ml classification,” International Journal of Web Engineering, vol. 19, no. 2, pp. 220–234, 2023.

[12] R. G. Munthe, M. Susan, and B. M. Sulungbudi, “The role of internal marketing in building organizational commitment and reducing turnover intention affecting the improved performance of life insurance agents in indonesia,” APTISI Transactions on Technopreneurship (ATT), vol. 6, no. 1, pp. 56–71, 2024.

[13] Y. A. Kurniawan and A. D. Putra, “Machine learning-based asset classification for decision support systems,” Jurnal Riset Informatika, vol. 5, no. 2, pp. 88–96, 2023.

[14] H. Zhao and M. Lin, “Probabilistic classification models for automated condition assessment in public facilities,” IEEE Access, vol. 11, pp. 145 320–145 330, 2023.

[15] S. Mukhtar and H. Yusuf, “Bayesian classification approach for public sector asset monitoring,” Government Information Analytics Journal, vol. 6, no. 4, pp. 120–131, 2023.

[16] R. Anggraini and E. Saputra, “Development of a web-based inventory system using na¨ıve bayes for data classification,” Journal of Software Engineering and Data Science, vol. 2, no. 2, pp. 77–86, 2022.

[17] P. Hidayat and A. Ramadhani, “Performance evaluation of na¨ıve bayes classifier using real-world administrative data,” Indonesian Journal of Information Systems, vol. 8, no. 1, pp. 33–44, 2024.

[18] F. Oktaviani and Y. Pradipta, “Smart asset classification model using probabilistic learning techniques,” International Journal of Data Intelligence, vol. 7, no. 2, pp. 150–162, 2023.

[19] D. Setiawan and R. Andika, “Optimizing workflow through na¨ıve bayes for asset prediction in public agencies,” Journal of Information Technology Research and Applications, vol. 4, no. 1, pp. 21–30, 2022.

[20] I. Putra and J. Maulana, “Comparative study of classification techniques for government asset condition analysis,” Journal of Digital Information Systems, vol. 10, no. 2, pp. 65–78, 2024.

[21] M. Al-Mamun, S. Rahman, and M. S. Hossain, “A web-based predictive maintenance system using na¨ıve bayes classification,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 4, pp. 112–120, 2022.

[22] R. K. Sari and A. N. Fadhilah, “Na¨ıve bayes-based decision support system for asset feasibility classification,” Journal of Information Systems Engineering, vol. 8, no. 1, pp. 45–54, 2022.

[23] L. Wu, P. Yin, and Y. Li, “A data-driven asset condition assessment model using bayesian classification, ”IEEE Access, vol. 10, pp. 78 234–78 244, 2022.

[24] S. Chattopadhyay and B. Das, “Web-based asset monitoring framework using machine learning classification,” International Journal of Web Information Systems, vol. 18, no. 3, pp. 410–429, 2022.

[25] A. Husain and R. F. Putri, “Improving government asset management through web-based information systems,” Jurnal Sistem Informasi, vol. 18, no. 2, pp. 203–214, 2022.

[26] S. S. Ahmed and J. Lee, “Machine learning approaches for municipal asset evaluation: A comparative study,” Smart Cities, vol. 5, no. 4, pp. 1402–1418, 2022.

[27] L. Chen and Y. Wang, “Enhanced na¨ıve bayes classification for decision support in public sector asset monitoring,” Computers & Industrial Engineering, vol. 180, pp. 109–120, 2023.

[28] H. Ramadhani and M. R. Hakim, “Web-based asset condition classification using na¨ıve bayes,” Journal of Informatics and Computing, vol. 7, no. 2, pp. 89–101, 2023.

[29] U. Rahardja and Q. Aini, “Analyzing player performance metrics for rank prediction in valorant using random forest: A data-driven approach to skill profiling in the metaverse,” International Journal Research on Metaverse, vol. 2, no. 2, pp. 102–120, 2025.

[30] N. D. Putri, A. F. Saadidtiar, A. S. Afriyadi, and D. Apriani, “Blockchain system management for learning 4.0,” Blockchain Frontier Technology, vol. 2, no. 2, pp. 10–14, 2023.

[31] E. P. Widodo, R. Anggraini, and M. D. Kurniawan, “Black-box testing evaluation for government information systems,” International Journal of Software Engineering, vol. 11, no. 1, pp. 66–75, 2023.

[32] K. Patel and A. Sharma, “Optimizing organizational asset decisions using probabilistic classifiers,” Journal of Data Intelligence, vol. 4, no. 2, pp. 98–110, 2023.

[33] M. Rahman and S. Alfiandra, “Web-based asset management system using machine learning classification,” IEEE Access, vol. 12, pp. 22 134–22 145, 2024.

[34] L. Wang, T. Zhang, and K. Liu, “Performance evaluation of na¨ıve bayes variants for multi-attribute classification tasks,” Journal of Information and Data Engineering, vol. 9, no. 1, pp. 77–89, 2024.

[35] A. Kumar and R. Patel, “Government asset condition prediction using probabilistic models,” International Journal of Data Science and Analytics, vol. 18, no. 2, pp. 121–133, 2024.

[36] K. Kis, C. Kirana, P. Romadiana, B. Wijaya, A. M. Raya et al., “Peningkatan sumber daya manusia melalui pembuatan video pembelajaran bagi guru-guru,” ADI Pengabdian Kepada Masyarakat, vol. 1, no. 2, pp. 1–7, 2021.

[37] Y. H. Park and M. S. Lee, “Improving public infrastructure maintenance using machine learning-based assessment models,” Government Information Quarterly, vol. 41, no. 1, 2024.

[38] S. Chandra and D. Prasetyo, “A comparative study of na¨ıve bayes and logistic regression for government data classification,” Procedia Computer Science, vol. 234, pp. 556–565, 2024.

[39] R. Fetra, T. Pradiani et al., “The influence of price, facilities, and service quality on re-staying interest,” ADI Journal on Recent Innovation, vol. 4, no. 2, pp. 184–193, 2023.

[40] R. T. Nugraha and M. H. Firdaus, “Web-based decision support system for asset feasibility evaluation,” Indonesian Journal of Information Systems, vol. 8, no. 2, pp. 102–112, 2024.

[41] K. K. RI, “Transformasi digital dalam penguatan tata kelola pemerintahan,” https://kominfo.go.id, 2024, accessed: 2025-01-30.

[42] H. Sullivan, “Machine learning-based public asset risk assessment: A practical implementation,” IEEE Transactions on Engineering Management, vol. 71, no. 3, pp. 612–624, 2024.

[43] T. K. Andiani and O. Jayanagara, “Effect of workload, work stress, technical skills, self-efficacy, and social competence on medical personnel performance,” Aptisi Transactions on Technopreneurship (ATT), vol. 5, no. 2, pp. 118–127, 2023.

[44] M. I. M. Siahaan and A. M. Harahap, “Implementasi algoritma naive bayes untuk prediksi kebutuhan aset pada yayasan pendidikan gkps,” Simtek: jurnal sistem informasi dan teknik komputer, vol. 10, no. 2, pp. 507–513, 2025.

[45] I. T. Monowati and R. Setyadi, “Penerapan algoritma na¨ıve bayes dalam memprediksi pengusulan penghapusan peralatan dan mesin kantor,” Journal of Information System Research (JOSH), vol. 4, no. 2, pp. 483–491, 2023.

[46] P. Z. Herlambang, N. Rahaningsih, and I. Ali, “Optimasi manajemen persediaan dengan klasifikasi naive bayes di toko baja mandiri,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 4, pp. 5651–5657, 2025.

[47] U. Rahardja, N. Lutfiani, M. A. D. Juliansah, and E. Aptman, “Strategy of production efficiency and improving the quality of wooden sofa legs in the manufacturing industry,” Startupreneur Business Digital (SABDA Journal), vol. 4, no. 2, pp. 155–164, 2025.

[48] N. S. Fauziah and R. D. Dana, “Implementasi algoritma naive bayes dalam klasifikasi status kesejahteraan masyarakat desa gunungsari,” Blend Sains Jurnal Teknik, vol. 1, no. 4, pp. 295–305, 2023.

[49] K. PANRB, “Kementerian panrb perkuat digitalisasi pelayanan publik dengan kementerian kominfo,” https://s.id/kominfo-com-berita, 2023, accessed: 2025-01-30.

[50] I. G. N. A. K. Dwi, L. Bethany, O. Smith et al., “Empowering tourism communication for sustainable village development,” Startupreneur Business Digital (SABDA Journal), vol. 3, no. 2, pp. 123–130, 2024.

[51] M. Averrouce, “Hadirkan kemudahan layanan publik melalui transformasi digital pemerintah,” https://www.menpan.go.id/site/berita-terkini/hadirkan-kemudahan-layanan-publik-melalui-transformasi-digital-pemerintah, 2025, accessed: 2025-01-30.

[52] B. Ravinder, S. K. Seeni, V. Prabhu, P. Asha, S. Maniraj, and C. Srinivasan, “Web data mining with organized contents using naive bayes algorithm,” in 2024 2nd International Conference on Computer, Communication and Control (IC4). IEEE, 2024, pp. 1–6.

[53] W. Ali, S. M. Shamsuddin, and A. S. Ismail, “Intelligent na¨ıve bayes-based approaches for web proxy caching,” Knowledge-Based Systems, vol. 31, pp. 162–175, 2012.

[54] U. Rahardja, M. Budiarto, K. Lutfiyah, O. F. P. Wahyudi, I. K. H. Azz, N. Azizah, and D. Julianingsih, “Analysis of the effectiveness of visual language and narrative in conveying value propositions in pitching decks,” International Transactions on Artificial Intelligence, vol. 3, no. 2, pp. 161–170, 2025.

[55] M. Irwansyah and A. S. Putra, “Implementation of kdd and machine learning for public sector data optimization,” Journal of E-Government Studies, vol. 6, no. 1, pp. 44–58, 2024.

[56] T. Hartono and P. Widodo, “Evaluation metrics for public asset classification models,” Journal of Intelligent Computing and Data Mining, vol. 5, no. 1, pp. 55–67, 2024.

Unduhan

Diterbitkan

2025-12-29

Terbitan

Bagian

Artikel

Cara Mengutip

Implementation of Naive Bayes for Optimizing Asset Condition Classification in a Web-Based Information System. (2025). Technomedia Journal, 10(3), 134-145. https://doi.org/10.33050/686nnx47