Penerapan Text Mining Dalam Menganalisis Pendapat Masyarakat Terhadap Pemilu 2024 Pada Media Sosial X Menggunakan Metode Naive Bayes
Application of Text Mining in Analyzing Public Opinions on the 2024 Election on Social Media X Using the Naive Bayes Method
DOI:
https://doi.org/10.33050/tmj.v9i1.2212Abstrak
Tetx mining is a process to utilize the ocean of data in the Industrial Age 4.0. The rapid growth in the use of social media has generated a lot of data in the form of text analysis, one of which is sentiment analysis. This research uses social media X in analyzing the sentiment of opinions about the 2024 election. This analysis was taken from X social media user comments as much as 300 review data divided into 2 categories, namely 100 training data and 200 test data, then tested using the naïve bayes method. The text mining method with the naïve bayes algorithm can be applied to analyze public opinion and sentiment towards the 2024 election on the X social media platform. The results of data testing with the naïve bayes method obtained results with the acquisition of 103 positive sentiments, 47 negative sentiments and 50 neutral sentiments.
Referensi
A. Apriani, H. Zakiyudin, and K. Marzuki, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF System Penerimaan Mahasiswa Baru pada Kampus Swasta,” Jurnal Bumigora Information Technology (BITe), vol. 3, no. 1, pp. 19–27, 2021.
A. Deolika, K. Kusrini, and E. T. Luthfi, “Analisis Pembobotan Kata Pada Klasifikasi Text Mining,” (JurTI) Jurnal Teknologi Informasi, vol. 3, no. 2, pp. 179–184, 2019.
W. Dai, G.-R. Xue, Q. Yang, and Y. Yu, “Transferring naive bayes classifiers for text classification,” in AAAI, 2007, pp. 540–545.
N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, and N. A. Rakhmawati, “Analisis klasifikasi sentimen terhadap sekolah daring pada twitter menggunakan Supervised Machine Learning,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 1, 2021.
D. C. U. Lieharyani and R. Ambarwati, “Visualisasi Data Tweet di Sektor Pendidikan Tinggi Pada Saat Masa Pandemi,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 1, pp. 116–123, 2022.
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 2, pp. 785–795, 2022.
L. H. A. P. Prawira, A. F. Ummah, M. R. Aditiya, and D. W. Nugroho, “Knowledge Management: Efforts to Create an Excellent Digital Creative Industry,” Startupreneur Business Digital (SABDA Journal), vol. 2, no. 2, pp. 172–181, 2023.
A. Felix, S. J. Salim, and J. M. Karsten, “Pemanfaatan Teknologi Layanan Fine Dining untuk Meningkatkan Customer Experience dan Influence Satisfaction,” Technomedia Journal, vol. 8, no. 3, pp. 91–104, 2024.
A. Saepulrohman, S. Saepudin, and D. Gustian, “Analisis Sentimen Kepuasan Pengguna Aplikasi Whatsapp Menggunakan Algoritma Naï ve Bayes Dan Support Vector Machine,” @ is The Best: Accounting Information Systems and Information Technology Business Enterprise, vol. 6, no. 2, pp. 91–105, 2021.
A. Salam, J. Zeniarja, and R. S. U. Khasanah, “Analisis Sentimen Data Komentar Sosial Media Facebook Dengan k-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekspress Indonesia),” 2018.
J. Sihombing, “Klasifikasi Data Antroprometri Individu Menggunakan Algoritma Naïve Bayes Classifier,” BIOS: Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 2, no. 1, pp. 1–10, 2021.
D. S. Budi and H. Syahrial, “Optimizing Database Performance in the Data Transformation Process in SQL Server: Pengoptimalan Performa Database Pada Proses Transformasi Data Pada SQL Server,” Technomedia Journal, vol. 8, no. 3 Februari, pp. 407–419, 2024.
Y. Yang, H. Wang, R. Jiang, X. Guo, J. Cheng, and Y. Chen, “A review of IoT-enabled mobile healthcare: technologies, challenges, and future trends,” IEEE Internet Things J, vol. 9, no. 12, pp. 9478–9502, 2022.
H. Safitri, M. H. R. Chakim, and A. Adiwijaya, “Strategy Based Technology-Based Startups to Drive Digital Business Growth,” Startupreneur Business Digital (SABDA Journal), vol. 2, no. 2, pp. 207–220, 2023.
D. Tuhenay, “Perbandingan Klasifikasi Bahasa Menggunakan Metode Naïve Bayes Classifier (NBC) Dan Support Vector Machine (SVM),” JIKO (Jurnal Informatika dan Komputer), vol. 4, no. 2, pp. 105–111, 2021.
N. Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” Jurnal Teknik Komputer AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022.
F. Wulandari, E. Haerani, M. Fikry, and E. Budianita, “Analisis sentimen larangan penggunaan obat sirup menggunakan algoritma naive bayes classifier,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 4, no. 1, pp. 88–96, 2023.
B. Rawat and R. Bhandari, “Cloud Computing Applications In Business Development,” Startupreneur Business Digital (SABDA Journal), vol. 2, no. 2, pp. 143–154, 2023.
L. South, D. Saffo, O. Vitek, C. Dunne, and M. A. Borkin, “Effective use of Likert scales in visualization evaluations: A systematic review,” in Computer Graphics Forum, Wiley Online Library, 2022, pp. 43–55.
F. F. Nugraha and C. Juliane, “Penerapan Data Mining Dengan Metode Klasifikasi Menggunakan Algoritma C4. 5,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 4, pp. 2862–2869, 2022.
S. Purnama, R. Widayanti, P. Edastama, and A. R. S. Panjaitan, “Bantuan Sosial Untuk Masyarakat Yang Terkena Dampak Ekonomi Selama Covid-19 di Garut,” ADI Pengabdian Kepada Masyarakat, vol. 2, no. 1, pp. 67–72, 2021.
R. Salam, H. Nusantoro, T. Ayuninggati, V. T. Devana, and A. P. Candra, “Peran Serta Dalam Melaksanakan Pembagian Makanan di Wilayah Bsd City,” ADI Pengabdian Kepada Masyarakat, vol. 2, no. 1, pp. 62–66, 2021.
N. Adiyanto, “Customer Relationship Management (CRM) Based On Web To Improve The Performance Of The Company,” ITSDI Journal Edition Vol. 1 No. 1 October 2019, p. 32, 2019.
N. K. Purnamawati, A. M. Adiandari, N. D. A. Amrita, and L. P. V. I. Perdanawati, “The Effect Of Entrepreneurship Education And Family Environment On Interests Entrepreneurship In Student Of The Faculty Of Economics, University Of Ngurah Rai In Denpasar,” ADI Journal on Recent Innovation (AJRI), vol. 1, no. 2 Maret, pp. 158–166, 2020.
J. Sihombing, “Klasifikasi Data Antroprometri Individu Menggunakan Algoritma Naïve Bayes Classifier,” BIOS: Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 2, no. 1, pp. 1–10, 2021.
S. H. Hardi and K. D. Hartomo, “Sentiment Analysis of Simobi Plus Mobile Application Using Naïve Bayes Classification,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, pp. 1117–1124, 2023.
B. Pernama and H. D. Purnomo, “Analisis Risiko Pinjaman dengan Metode Support Vector Machine, Artificial Neural Network dan Naïve Bayes,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 7, no. 1, pp. 92–99, 2023.
S. Y. Nursyi’ah, A. Erfina, and C. Warman, “Analisis Sentimen Pembelajaran Daring Pada Masa Pandemi Covid-19 Di Twitter Menggunakan Algoritma Naïve Bayes,” in Prosiding Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra, 2021, pp. 117–123.
K. A. Baihaqi et al., “A Comparison Support Vector Machine, Logistic Regression And Naïve Bayes For Classification Sentimen Analisys user Mobile App,” International Journal of Artificial Intelligence Research, vol. 7, no. 1, pp. 64–71, 2023.
H. S. Hopipah and R. Mayasari, “Optimasi Backward Elimination untuk Klasifikasi Kepuasan Pelanggan Menggunakan Algoritme k-nearest neighbor (k-NN) and Naive Bayes,” Technomedia Journal, vol. 6, no. 1, pp. 99–110, 2021.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Risha Nur Mauliza, Yoannes Romando Sipayung

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.