Responsible Environmental Management: Sustainable Strategy Models for the Future

Chandra Lukita¹, Rio Wahyudin Anugrah², Sheila Aulia Anjani³, Anandha Fitriani⁴, Thabo Mkhize^{5*}

¹Faculty of Economics and Business, Catur Insan Cendekia University, Indonesia

²Faculty of Science and Technology, University of Raharja, Indonesia

^{3,4}Faculty of Economics and Business, Indonesian Lecturers Association, Indonesia

⁵Dept of Software Engineering, Ilearning Incorporation, South Africa

¹chandra.lukita@cic.ac.id, ²rio.wahyudin@raharja.info, ³sheila@raharja.info, ⁴anandha@raharja.info, ⁵thabookhi@ilearning.ee

Corresponding Author*

Article Info

Article history:

Received September 06, 2024 Revised September 17, 2024 Accepted September 21, 2024

Keywords:

Responsible Environmental Management Sustainable Strategy Models Environmental Sustainability Business Performance SmartPLS

ABSTRACT

The aim of this study is to explore the relationship between responsible environmental management and business performance, emphasizing sustainable strategy models that enhance both environmental sustainability and profitability in modern organizations. Using Partial Least Squares Structural Equation Modeling (PLS-SEM) with SmartPLS, data were collected from 150 medium to large organizations across multiple industries, including manufacturing, retail, and energy sectors, all of which have implemented formal environmental management initiatives. The **findings** reveal a statistically significant positive impact of responsible environmental management on both environmental sustainability $(\beta = 0.72, p < 0.01)$ and business performance $(\beta = 0.65, p < 0.01)$. Additionally, environmental sustainability was found to positively influence business performance ($\beta = 0.54, p < 0.01$). These **results** validate the relevance of models such as the Triple Bottom Line and Circular Economy, providing actionable insights for companies aiming to enhance competitiveness while achieving sustainability goals. This study highlights the practical implications for business leaders and policymakers, particularly in fostering sustainable practices that align with both regulatory demands and long-term profitability. Future research is recommended to explore the longitudinal impacts of these strategies across different sectors and regulatory environments.

This is an open access article under the <u>CC BY-SA 4.0</u> license.

*Corresponding Author:

Thabo Mkhize (thabookhi@ilearning.ee)
DOI: https://doi.org/10.33050/atm.v8i3.2358

This is an open-access article under the CC-BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)
©Authors retain all copyrights

1. INTRODUCTION

In recent years, responsible environmental management has become a critical focus in global sustainability efforts. According to the United Nations Environment Programme (UNEP), environmental degradation, particularly from industrial activities, is accelerating at an alarming rate, with over 7 million premature deaths annually linked to air pollution and ecosystem damage [1]. Additionally, the World Economic Forum (WEF) reports that businesses face increasing regulatory pressures and financial risks related to unsustainable environmental practices, further underscoring the urgent need for effective environmental management strategies

[2]. As these challenges grow, businesses and organizations are increasingly pressured to adopt management strategies that not only mitigate environmental impact but also ensure long-term ecological balance [3]. The integration of environmental responsibility into business operations is no longer a peripheral concern; it is central to achieving sustainable development goals and safeguarding future generations [4], [5].

However, despite growing awareness and commitments, many companies still struggle to implement effective and sustainable environmental management strategies [6]. The complexity of modern business ecosystems, combined with varying regulatory frameworks and stakeholder expectations, necessitates the development of more robust and adaptable models [7], [8]. From a practical perspective, businesses must align their sustainability efforts with profitability, while from an academic standpoint, it is essential to fill the existing gaps in the literature regarding the optimal strategy models for balancing ecological and financial outcomes [9]. Sustainable strategy models are crucial for guiding organizations towards environmentally responsible practices that meet global sustainability targets while maintaining competitive advantage [10].

In light of the growing pressures and the complexity of regulatory frameworks, there is a pressing need for more robust and adaptable sustainability models. Therefore, this study aims to explore and evaluate sustainable strategy models that can be applied in responsible environmental management across different sectors [11]. While previous studies have explored the relationship between environmental management and business performance, there remains a gap in understanding the specific sustainable strategy models that optimize both ecological and financial outcomes across diverse sectors [12], [13]. This study addresses this gap by examining the effectiveness of models like the Circular Economy and Natural Capitalism, and how these models contribute to both environmental sustainability and business success.

1.1. Literature Review

1.1.1. Concept of Responsible Environmental Management

Responsible environmental management refers to the systematic approach that organizations adopt to minimize their environmental impact and promote sustainability in their operations [14]. It involves the integration of environmental considerations into decision-making processes and business strategies, ensuring that ecological sustainability is treated with the same level of importance as economic performance [15].

Key principles of responsible environmental management include:

- Pollution Prevention: Reducing or eliminating waste at its source rather than managing it after it is created.
- Resource Efficiency: Optimizing the use of energy, water, and raw materials to reduce consumption and improve sustainability.
- Compliance with Environmental Regulations: Adhering to local, national, and international environmental laws and standards.
- Stakeholder Engagement: Involving key stakeholders, including employees, customers, investors, and the community, in the environmental management process.
- Continuous Improvement: Regularly monitoring and updating environmental practices to achieve better outcomes over time.

Recent studies have expanded this concept by examining how digital technologies, such as IoT and AI, can enhance the efficiency of resource management and monitoring, making responsible environmental management more adaptable and scalable across industries [16], [17]. These technologies enable real-time tracking of environmental performance, providing businesses with data-driven insights to continuously improve sustainability efforts. The integration of these technologies helps companies reduce their environmental footprint while simultaneously improving operational efficiency [18], [19].

Several examples highlight the practical implementation of responsible environmental management [20]. For instance, large corporations such as Unilever and Patagonia have implemented comprehensive sustainability programs that focus on reducing waste, lowering carbon emissions, and promoting ethical sourcing [21], [22]. These initiatives demonstrate that responsible environmental management is not only feasible but also beneficial for brand reputation and long-term business sustainability [23] [24]. However, while the outcomes are promising, the challenge remains in scaling these practices across smaller businesses, especially in regions with less regulatory oversight.

1.1.2. Sustainable Strategy Models

Sustainable strategy models are frameworks that guide organizations in developing and implementing practices that contribute to both environmental sustainability and long-term business success [25]. These models, such as the Circular Economy, Natural Capitalism, and Triple Bottom Line, integrate economic, social, and environmental dimensions, ensuring a balance between profitability and ecological responsibility [26]. The Circular Economy Model promotes the continuous reuse of products, while Natural Capitalism emphasizes the preservation of natural resources as key economic assets [27]. Despite their wide adoption, few studies have critically analyzed the limitations of these models, particularly in sectors where regulatory frameworks differ significantly [28].

Recent research highlights that while the Circular Economy Model is highly effective in manufacturing and resource-intensive industries, its applicability in the service and digital sectors is still underexplored [29]. Additionally, Natural Capitalism has been praised for emphasizing resource preservation, but critics argue that it places too much responsibility on businesses without sufficiently addressing the role of governments and policy-makers in regulating resource use.

Some of the most common sustainable strategy models include:

- Circular Economy Model: This model promotes a closed-loop system where products and materials are continuously reused, remanufactured, or recycled, reducing waste and resource consumption. It emphasizes designing products with their full lifecycle in mind, from production to end-of-life disposal.
- Natural Capitalism Model: Focused on valuing natural resources as core economic assets, this model encourages businesses to operate in ways that preserve and enhance these resources. It advocates for increased resource productivity, investing in sustainable technologies, and minimizing environmental degradation.
- Corporate Social Responsibility (CSR) Model: The CSR model integrates sustainability into a company's broader social responsibility agenda, focusing on ethical business practices that benefit the environment, employees, and society at large. Many companies adopt CSR to align their environmental goals with social and governance initiatives.
- Triple Bottom Line (TBL) Model: The TBL model measures success based on three dimensions: economic, environmental, and social.

These models are widely adopted across various sectors, from manufacturing and retail to energy and services. For example, industrial companies may utilize the Circular Economy Model to optimize their resource use, while public sector organizations may implement the CSR Model to align their operations with societal expectations for sustainability.

However, limitations in these models remain, particularly in balancing short-term profitability with long-term sustainability goals. Some industries, such as technology and finance, may find it challenging to adopt models like the Circular Economy, as their business models focus less on physical resources and more on digital goods and services.

Based on the existing literature, the following hypotheses are proposed:

- H1: Responsible environmental management has a positive effect on environmental sustainability.
- H2: Environmental sustainability positively influences business performance.
- H3: Responsible environmental management directly contributes to enhanced business performance.

These hypotheses will be tested using Partial Least Squares Structural Equation Modeling (PLS-SEM) to validate the proposed relationships between the constructs.

1.1.3. Related Theoretical Frameworks

Several theoretical frameworks form the basis for developing sustainable strategy models in responsible environmental management [30]. One of the key frameworks is Sustainability Theory, which emphasizes the need for economic growth to occur within the boundaries of environmental limits [31]. This theory advocates for development that satisfies the needs of the present without compromising the ability of future generations to meet their own needs. It serves as the philosophical foundation for many sustainable management practices, promoting the balance between environmental conservation and economic activity [32].

Another important framework is Stakeholder Theory, which argues that businesses should create value for all stakeholders, not just shareholders [33]. In the context of environmental management, this means considering the interests and concerns of a wide range of groups, including employees, customers, suppliers, communities, and the environment itself [34]. By addressing the environmental needs of these stakeholders, companies can build long-term success and legitimacy.

The Triple Bottom Line (TBL) framework also plays a crucial role, integrating economic, environmental, and social dimensions of business performance [35]. This approach goes beyond traditional financial metrics to include sustainability as a measure of organizational success [36]. By adopting the TBL, companies strive to achieve a balance between profitability, social equity, and environmental responsibility, ensuring that their operations contribute positively to society.

2. THE COMPREHENSIVE THEORETICAL BASIS

2.1. Research Design

This study employs a quantitative research approach to examine the relationships between responsible environmental management, sustainable strategy models, and business performance. The analysis is conducted using Partial Least Squares Structural Equation Modeling (PLS-SEM), which is particularly suited for exploratory research involving complex relationships between variables [37]. SmartPLS was selected due to its ability to model latent variables and handle small sample sizes. The target population includes medium to large enterprises across industries such as manufacturing, retail, and energy, all of which demonstrate a commitment to sustainability practices through ISO 14001 certifications or public sustainability reporting. The sampling method is purposive sampling, ensuring that only companies with formal environmental initiatives are included.

2.2. Population and Sampling

The target population for this study consists of companies and organizations across various industries that have implemented or are in the process of adopting responsible environmental management practices. This includes firms from sectors such as manufacturing, energy, retail, and services, with a focus on medium to large enterprises that have formal sustainability initiatives.

The sampling method used in this study is purposive sampling, where respondents are selected based on specific criteria relevant to the study's objectives. Companies included in the sample must demonstrate some level of commitment to sustainable environmental management, whether through certifications, public sustainability reporting, or recognized green initiatives. This ensures that the study captures insights from organizations that are actively engaged in responsible environmental management.

2.3. Data Collection Instruments

Data collection is conducted through a structured questionnaire designed to measure the key constructs of the study, which include:

- Responsible Environmental Management: This variable measures the extent to which companies integrate environmental concerns into their business practices. Items may assess policies on waste reduction, pollution control, energy efficiency, and resource management.
- Environmental Sustainability: This variable captures the outcomes of a company's efforts in maintaining ecological balance, reducing carbon emissions, and conserving natural resources.
- Business Performance: This variable assesses the impact of sustainable strategies on the financial and operational performance of the company. It includes metrics such as profitability, market share, and competitive advantage.

The questionnaire consists of multiple items for each construct, using a Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The items are adapted from existing validated scales in environmental management and business performance literature to ensure reliability and validity.

2.4. Data Analysis

The data analysis will be conducted using SmartPLS, which is suitable for testing structural equation models with latent constructs. The analysis process will follow these steps:

- Construct Validation: The first step involves validating the measurement model to ensure that the questionnaire items accurately reflect the constructs being studied. This includes assessing convergent validity (ensuring items that are supposed to measure the same construct are correlated) and discriminant validity (ensuring that constructs that are supposed to be different are indeed distinct).
- Reliability Testing: Internal consistency will be tested using Cronbach's Alpha and Composite Reliability
 (CR) to ensure that the items for each construct are reliable and consistent. Values above 0.7 for both
 metrics are considered acceptable.
- Path Analysis: Once the measurement model is validated, the structural model will be tested to analyze the relationships between the variables. Path coefficients will be evaluated to determine the strength and significance of the relationships between responsible environmental management, environmental sustainability, and business performance.
- Model Fit Evaluation: The overall model fit will be assessed using fit indices such as the Standardized Root Mean Square Residual (SRMR), with values below 0.08 indicating a good fit. Additionally, R-squared values will be used to evaluate the explanatory power of the model, with higher values indicating better model fit for the dependent variables.

3. RESULT AND DISCUSSION

3.1. Research Findings

After analyzing the data using SmartPLS, several significant findings emerged from the study. The measurement model demonstrated strong reliability and validity, as shown in Table 1. All constructs achieved acceptable levels of Cronbach's Alpha and Composite Reliability (CR), confirming the internal consistency of the measurement items. Additionally, the Average Variance Extracted (AVE) values were above the threshold of 0.5, indicating good convergent validity.



Figure 1. Structural Model And Path Coefficients

The structural model was evaluated by examining path coefficients and R-squared values. As illustrated in Figure 1, responsible environmental management was found to have a positive and significant impact

on environmental sustainability ($\beta=0.72, p<0.01$) and business performance ($\beta=0.65, p<0.01$). Similarly, environmental sustainability showed a strong positive relationship with business performance ($\beta=0.54, p<0.01$). These results suggest that companies that adopt responsible environmental management practices not only improve their environmental outcomes but also enhance their business performance.

Table 1. R-Square

	R-Square
Environmental Sustainability	0.52
Business Performance	0.48

Table 1 explain model explained a substantial portion of the variance in environmental sustainability ($R^2=0.52$) and business performance ($R^2=0.48$), indicating that the proposed sustainable strategy models account for 52% of the variance in environmental sustainability and 48% in business performance. These values suggest that the adoption of responsible environmental management practices has a strong explanatory power in determining both environmental and business outcomes. In particular, the R^2 value for environmental sustainability shows that over half of the variation in sustainability performance can be attributed to how well companies integrate responsible environmental management into their operations, indicating that the proposed sustainable strategy models account for a significant part of the outcomes in these constructs.

Table 2. Construct Reliability and Validity

Tuble 2. Construct Rendomity and variety					
Construct	Cronbach's Alpha	Composite Reliability (CR)	Average Variance Extracted (AVE)		
Responsible					
Environmental	0.89	0.91	0.65		
Management					
Environmental	0.87	0.90	0.62		
Sustainability	0.87	0.90	0.02		
Business	0.85	0.88	0.61		
Performance	0.83	0.88	0.01		

Table 2 ilustrate Cronbach's Alpha is a measure of internal consistency, indicating how closely related the items in a set are as a group. Generally, a value above 0.70 is considered acceptable, reflecting good reliability. In this table, Responsible Environmental Management has a Cronbach's Alpha of 0.89, Environmental Sustainability has 0.87, and Business Performance has 0.85, all demonstrating high reliability.

Composite Reliability (CR), which also measures internal consistency but takes into account the loadings of the individual items, further supports the reliability of the constructs. CR values above 0.70 are also considered good. The CR values in this table are 0.91, 0.90, and 0.88 for Responsible Environmental Management, Environmental Sustainability, and Business Performance, respectively, confirming the constructs' robustness.

Average Variance Extracted (AVE) assesses the amount of variance captured by a construct in relation to the variance due to measurement error. An AVE value above 0.50 indicates that the construct explains more than half of the variance in its indicators. The AVE values are 0.65, 0.62, and 0.61 for Responsible Environmental Management, Environmental Sustainability, and Business Performance, respectively, all of which exceed the 0.50 threshold, suggesting good convergent validity.

Table 3. Hypothesis Testing Results

racie 3. Hypothesis results						
Hypothesis	Path Coefficient	P-value	Result			
Responsible Environmental Management	0.72	0.01	Supported			
>Environmental Sustainability	0.72					
Responsible Environmental Management	0.65	0.01	Supported			
>Business Performance	0.03					
Environmental Sustainability	0.54	0.01	Supported			
>Business Performance	0.34					

3.2. Interpretation of Findings

The findings of this study provide strong empirical support for the positive impact of environmentally responsible management on both environmental sustainability and business performance. The significant path coefficients suggest that companies adopting sustainable strategies not only contribute to environmental conservation but also experience tangible business benefits such as improved profitability, enhanced reputation, and competitive advantage.

Notably, the path coefficient between responsible environmental management and environmental sustainability ($\beta=0.72$) indicates a substantial positive effect, suggesting that effective environmental management practices lead to better sustainability outcomes. Furthermore, the significant positive path coefficient between responsible environmental management and business performance ($\beta=0.65$) illustrates that a 65% improvement in business performance can be attributed to adopting responsible environmental practices. This highlights the practical benefits of integrating environmental stewardship into business strategies, including profitability and enhanced market position.

In addition, the relationship between environmental sustainability and business performance ($\beta=0.54$) underscores the importance of sustainability efforts in driving business success. This finding supports the idea that companies prioritizing environmental initiatives not only fulfill ethical obligations but also gain competitive advantages, such as increased customer loyalty and stronger brand equity. These results are consistent with the Triple Bottom Line (TBL) model, which emphasizes the integration of environmental, social, and financial dimensions for sustainable growth.

Furthermore, the strong link between environmental sustainability and business performance indicates that environmentally responsible actions can serve as a driver of competitive differentiation, enhancing a company's market position and customer loyalty. This reinforces the relevance of sustainability strategies in today's competitive business environment.

3.3. Critical Discussion

These findings align with previous studies that emphasize the importance of integrating sustainability into business strategies. The positive relationship between responsible environmental management and business performance ($\beta=0.65$) also echoes findings from research on Corporate Social Responsibility (CSR), where businesses that demonstrate environmental responsibility tend to build stronger brand equity and customer trust.

However, this study advances the existing literature by using SmartPLS for Partial Least Squares Structural Equation Modeling (PLS-SEM), which provides a more nuanced understanding of the complex relationships between these variables. Unlike traditional regression techniques, the use of PLS-SEM allows for the simultaneous analysis of multiple dependent variables and constructs, offering deeper insights into the causal pathways between environmental management, sustainability, and business performance.

Additionally, the study contributes to the growing body of literature supporting both the Circular Economy Model and the Natural Capitalism Model. These models emphasize the long-term value of sustainability for business success by promoting resource efficiency and reducing waste. By validating these models in the context of responsible environmental management, this research provides practical insights for businesses looking to implement sustainable practices that align with their strategic goals. These insights are especially valuable for organizations seeking to balance profitability with environmental and social responsibility, demonstrating that sustainability initiatives can lead to long-term economic viability.

4. CONCLUSION

This study **highlights** the significant positive impact of responsible environmental management on both environmental sustainability and business performance. The **findings** demonstrate that companies adopting sustainable strategy models not only contribute to ecological preservation but also experience improved financial and operational outcomes. These **results** support the relevance of the Triple Bottom Line approach and validate the practical value of models such as the Circular Economy and Natural Capitalism in modern business. However, the study is **limited** by the scope of its sample, which may not fully represent all industry sectors, and the reliance on self-reported data, which can introduce measurement bias. **Future research** should explore a broader range of industries and incorporate longitudinal data to assess the long-term effects of sustainable strategies on business performance and environmental outcomes.

REFERENCES

- [1] United Nations Environment Programme, "Air Pollution Interactive Note," https://www.unep.org/interactives/air-pollution-note/, 2023, accessed: 2024-09-17.
- [2] World Economic Forum, "The Global Risks Report 2023 Digest," https://www.weforum.org/publications/global-risks-report-2023/digest/, 2023, accessed: 2024-09-17.
- [3] S. Andhella, H. Djajadikerta, and M. Y. Marjuka, "Technopreneurship in pro-environmental behavior for sustainable carbon emission reduction in central kalimantan," *Aptisi Transactions on Technopreneurship* (*ATT*), vol. 6, no. 2, pp. 254–269, 2024.
- [4] R. Ahli, M. F. Hilmi, and A. Abudaqa, "Moderating effect of perceived organizational support on the relationship between employee performance and its determinants: A case of entrepreneurial firms in uae," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 2, pp. 199–212, 2024.
- [5] M. Wahyudi, V. Meilinda, and A. Khoirunisa, "The digital economy's use of big data," *International Transactions on Artificial Intelligence*, vol. 1, no. 1, pp. 62–70, 2022.
- [6] I. Maria *et al.*, "Unlocking success: Human resource management for startupreneur," *Startupreneur Business Digital (SABDA Journal)*, vol. 3, no. 1, pp. 89–97, 2024.
- [7] J. Moscato, "Evaluating organizational performance using smartpls: A management perspective," *APTISI Transactions on Management*, vol. 7, no. 3, pp. 273–281, 2023.
- [8] R. Nabil, M. G. Anzalas, I. A. Wisetiaputra, A. Z. Putra, and M. Abdullana, "Perancangan website sebagai media informasi desa rawa rengas, kecamatan kosambi, kabupaten tangerang," *ADI Pengabdian Kepada Masyarakat*, vol. 4, no. 2, pp. 24–31, 2024.
- [9] N. Ulita, A. T. Kartanegara, J. Salsabila, A. Saleh, and Z. Queen, "Empathy map gen z towards healthy food: A foodpreneur design strategy," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 2, pp. 242–253, 2024.
- [10] U. Rahardja, Q. Aini, A. S. Bist, S. Maulana, and S. Millah, "Examining the interplay of technology readiness and behavioural intentions in health detection safe entry station," *JDM (Jurnal Dinamika Manajemen)*, vol. 15, no. 1, pp. 125–143, 2024.
- [11] M. Yusuf, M. Yusup, R. D. Pramudya, A. Y. Fauzi, and A. Rizky, "Enhancing user login efficiency via single sign-on integration in internal quality assurance system (espmi)," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 164–172, 2024.
- [12] A. Lansonia and M. Austin, "The role of information management in enhancing organizational resilience," *APTISI Transactions on Management*, vol. 8, no. 1, pp. 32–39, 2024.
- [13] S. Purnama and C. S. Bangun, "Strategic management insights into housewives consumptive shopping behavior in the post covid-19 landscape," *APTISI Transactions on Management*, vol. 8, no. 1, pp. 71–79, 2024.
- [14] S. A. Hasan, W. N. Al-Zahra, A. S. Auralia, D. A. Maharani, R. Hidayatullah *et al.*, "Implementasi teknologi blockchain dalam pengamanan sistem keuangan pada perguruan tinggi," *Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi*, vol. 3, no. 1, pp. 11–18, 2024.
- [15] N. Lutfiani, N. P. L. Santoso, R. Ahsanitaqwim, U. Rahardja, and A. R. A. Zahra, "Ai-based strategies to improve resource efficiency in urban infrastructure," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 121–127, 2024.
- [16] M. G. Hardini, T. Khaizure, and G. Godwin, "Exploring the effectiveness of e-learning in fostering innovation and creative entrepreneurship in higher education," *Startupreneur Business Digital (SABDA Journal)*, vol. 3, no. 1, pp. 34–42, 2024.
- [17] D. Robert, F. P. Oganda, A. Sutarman, W. Hidayat, and A. Fitriani, "Machine learning techniques for predicting the success of ai-enabled startups in the digital economy," *CORISINTA*, vol. 1, no. 1, pp. 61– 69, 2024
- [18] S. Watini *et al.*, "Development of java hands startup business idea model by lean startup approach," *Startupreneur Business Digital (SABDA Journal)*, vol. 2, no. 1, pp. 43–50, 2023.
- [19] L. W. Ming, J. Anderson, F. Hidayat, F. D. Yulian, and N. Septiani, "Ai as a driver of efficiency in waste management and resource recovery," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 128–134, 2024.
- [20] D. Bennet *et al.*, "Advancing e-commerce smart-pls as a catalyst for improved online shopping services," *International Transactions on Education Technology (ITEE)*, vol. 2, no. 2, pp. 99–108, 2024.
- [21] H. Ramdhan and S. Aripin, "Strategi digital untuk bisnis: Pendekatan praktis dan implementasi di industri

- 4.0," ADI Bisnis Digital Interdisiplin Jurnal, vol. 5, no. 1, pp. 34-40, 2024.
- [22] A. P. Febrina, H. R. Ngemba, S. Hendra, Y. Anshori, and A. Azizah, "Serli discovery learning dalam mendukung pembelajaran ilmu pengetahuan alam siswa berbasis android: Serli discovery learning in supporting android-based natural science learning for students," *Technomedia Journal*, vol. 9, no. 1, pp. 130–142, 2024.
- [23] Q. Aini, D. Manongga, U. Rahardja, I. Sembiring, and Y.-M. Li, "Understanding behavioral intention to use of air quality monitoring solutions with emphasis on technology readiness," *International Journal of Human–Computer Interaction*, pp. 1–21, 2024.
- [24] I. Sembiring, U. Rahardja, D. Manongga, Q. Aini, and A. Wahab, "Enhancing aiku adoption: Insights from the role of habit in behavior intention," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 1, pp. 84–108, 2024.
- [25] S. Wijaya, A. Husain, M. Laurens, and A. Birgithri, "ilearning education challenge: Combining the power of blockchain with gamification concepts," *CORISINTA*, vol. 1, no. 1, pp. 8–15, 2024.
- [26] A. Fernanda, M. Huda, and A. R. F. Geovanni, "Application of learning cloud computing technology (cloud computing) to students in higher education," *International Journal of Cyber and IT Service Management*, vol. 3, no. 1, pp. 32–39, 2023.
- [27] E. E. Djajasasana and J. R. K. Bokau, "Utilization of micro influencers and engagement in social media to gain cadet candidates," *ADI Journal on Recent Innovation*, vol. 6, no. 1, pp. 1–7, 2024.
- [28] J. Williams, A. G. Prawiyogi, M. Rodriguez, and I. Kovac, "Enhancing circular economy with digital technologies: A pls-sem approach," *International Transactions on Education Technology (ITEE)*, vol. 2, no. 2, pp. 140–151, 2024.
- [29] A. Delhi, E. Sana, A. A. Bisty, and A. Husain, "Innovation in business management exploring the path to competitive excellence," *APTISI Transactions on Management*, vol. 8, no. 1, pp. 58–65, 2024.
- [30] A. Muhtadibillah, H. T. Sukmana, and N. F. Rozy, "An evaluation of helpdesk with gamification using indeks kepuasan masyarakat (ikm)," *IAIC Transactions on Sustainable Digital Innovation (ITSDI) The 1st Edition Vol. 1 No. 1 October 2019*, p. 8, 2021.
- [31] J. I. Saputro, P. A. Rustambi, M. Al Makkah, H. M. Nadhif *et al.*, "Pengkajian sistem informasi pengarsipan surat masuk dan surat keluar di kecamatan benda," *ADI Pengabdian Kepada Masyarakat*, vol. 4, no. 2, pp. 8–13, 2024.
- [32] U. Rusilowati, H. R. Ngemba, R. W. Anugrah, A. Fitriani, and E. D. Astuti, "Leveraging ai for superior efficiency in energy use and development of renewable resources such as solar energy, wind, and bioenergy," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 114–120, 2024.
- [33] A. Ruangkanjanases, A. Khan, O. Sivarak, U. Rahardja, and S.-C. Chen, "Modeling the consumers' flow experience in e-commerce: The integration of ecm and tam with the antecedents of flow experience," *SAGE Open*, vol. 14, no. 2, p. 21582440241258595, 2024.
- [34] F. Alfiana, N. Khofifah, T. Ramadhan, N. Septiani, W. Wahyuningsih, N. N. Azizah, and N. Ramadhona, "Apply the search engine optimization (seo) method to determine website ranking on search engines," *International Journal of Cyber and IT Service Management*, vol. 3, no. 1, pp. 65–73, 2023.
- [35] V. Melinda, T. Williams, J. Anderson, J. G. Davies, and C. Davis, "Enhancing waste-to-energy conversion efficiency and sustainability through advanced artificial intelligence integration," *International Transactions on Education Technology (ITEE)*, vol. 2, no. 2, pp. 183–192, 2024.
- [36] M. Irawan and Z. A. Tyas, "Desain asset game android komodo isle berbasis 2 dimensi," *ADI Bisnis Digital Interdisiplin Jurnal*, vol. 5, no. 1, pp. 58–66, 2024.
- [37] N. S. Ainy, I. Mujadid, N. Hadi, and L. Sjahfirdi, "Increase in the abundance of invasive fish species in the ciliwung river, dki jakarta and west java provinces," *ADI Journal on Recent Innovation*, vol. 6, no. 1, pp. 17–31, 2024.