Strategic Management of Public Health Risks: Correlation Between Water Quality and \textit{Aedes} Sp. in South Jakarta

Zulfia Maharani\textsuperscript{1}, Atang Saputra\textsuperscript{2}, Syarifuddin\textsuperscript{3}

\textsuperscript{1,2,3}Department of Environmental Health, Poltekkes Kemenkes Jakarta II, Indonesia
\textsuperscript{1}zulfia.maharani@poltekkesjkt2.ac.id, \textsuperscript{2}atangdepkes@gmail.com, \textsuperscript{3}syarifuddin.mkes@gmail.com

\textbf{ABSTRACT}

This study focuses on investigating the relationship between water temperature, water \textit{pH}, and residual water chlorine with the presence of \textit{Aedes} sp. larvae in the RW 06 area of North Gandaria Village, Kebayoran Baru District, South Jakarta. Utilizing an analytical cross-sectional research design, the study encompasses a population of 667 houses in RW 06, with a sample size of 92 houses determined through Proportional Simple Random Sampling. The analysis employs chi-square tests to examine the associations between the variables. The findings reveal that there is no significant relationship between water temperature and the presence of \textit{Aedes} sp. larvae (\textit{P}-value = 0.659) and no significant relationship between water \textit{pH} and the presence of \textit{Aedes} sp. larvae (\textit{P}-value = 0.434). However, the research does identify a noteworthy association between residual water chlorine and the presence of \textit{Aedes} sp. larvae (\textit{P}-value = 0.000). This emphasizes the importance of water chlorine levels in influencing the presence of \textit{Aedes} sp. larvae in the specified area. The study's outcomes contribute valuable insights to the management of water quality in the context of \textit{Aedes} sp. larvae control.

\textbf{Keywords:}
\begin{itemize}
  \item Aedes sp.
  \item Dengue Haemoragic Fever
  \item Temperature
  \item \textit{pH}
  \item Residual Chlorine
\end{itemize}

\textit{This is an open access article under the CC BY-SA license.}

*Corresponding Author:
Zulfia Maharani (zulfia.maharani@poltekkesjkt2.ac.id)
DOI: https://doi.org/10.33050/atm.v8i1.2205
This is an open-access article under the CC-BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)
©Authors retain all copyrights

1. \textbf{INTRODUCTION}

Water is a vital need for living creatures in this world, not only important for humans but also for animals and plants. However, on the other hand, water is also a medium for disease-carrying vectors. Water can be a place for mosquitoes to live and develop as vectors that carry infectious diseases such as malaria, dengue fever, filariasis, chikungunya fever, and Japanese Encephalitis (JE). Dengue Haemoragic Fever (DHF) is caused by a virus dengue which is transmitted through mosquito bites \textit{Aedes} sp., especially Templest of the Egyptiansor \textit{Aedes} albopictus. Mosquito \textit{Aedes} sp. prefers clear water reservoirs protected from sunlight as its brooding place [24]. Clean water that is stored and used by residents generally comes from various sources, for example rainwater, PDAM water and groundwater. The clean water reservoir is a good medium for mosquito breeding \textit{Aedes} Sp. Indonesia is one of the endemic countries for dengue fever and experiences epidemics every 4-5 years, especially in urban areas. Environmental factors that are susceptible to dengue hemorrhagic fever include lots of clean stagnant water which can become a place for mosquitoes to nest, high

\textit{Journal homepage:} https://ijc.ilearning.co/index.php/ATM/index
mobility between residents, and fast transportation activities between regions which cause frequent epidemics of dengue fever [21].

According to the 2020 Indonesian Health Profile, 108,303 cases of dengue hemorrhagic fever were reported to the Ministry of Health in 2020. This number decreased compared to the previous year, reaching 138,127 in 2019. Based on the number of cases, the number of deaths due to dengue hemorrhagic fever in 2020 also decreased from 919 in 2019 it became 747. The incidence of dengue hemorrhagic fever in 2020 was 40 per 100,000 population. Compared to 2019, it was relatively low at 51.5 per 100,000. The death rate due to dengue hemorrhagic fever in Indonesia is 0.7%. A province is said to have a high Case Fatality Rate if it exceeds 1%. In 2020 there were eleven provinces with a Case Fatality Rate above 1% [12].

In the health profile of DKI Jakarta in 2020, the number of dengue hemorrhagic fever cases in 2020 was 4,744 cases, and South Jakarta was in third place with the highest number of cases with 775 cases [5]. Based on a report from the South Jakarta Health Department in 2022, data on cases Dengue Haemoragic Fever (DHF) in Kebayoran Baru District, South Jakarta, in 2021 there were 82 cases of dengue fever, the most cases were in Gandaria Utara Subdistrict with 17 cases of dengue fever. From data on dengue fever cases in North Gandaria Village in 2021, the most cases were in RW 06, namely 4 cases. Environmental factors that influence the presence of larvae and mosquitoes Aedes sp. namely the physical environment, biological environment and social environment. The physical environment that influences the presence of larvae Aedes sp. namely water quality, one of which is the pH level and temperature of the water, so it influences mosquito breeding [8].

Based on the results of research conducted by M. Rasyid Ridha et al in 2013, the higher the pH of the water, the more mosquito larvae there will be. Temples of the Egyptians more increasing. In another journal written by Agus Widada and Moh. Gazali, the results of his research show that the higher the chlorine concentration in the water, the higher the percentage of mosquito eggs Aedes sp. those that do not hatch are also lower, thereby preventing the development of mosquitoes.

2. RESEARCH METHOD

This research is an analytical study using a research design cross-sectional. This research was carried out by observing and examining the relationship between independent variables, namely water quality consisting of temperature, pH and residual chlorine with the dependent variable, namely the presence of larvae Aedes sp., whose significance value is determined by uji Chi-Square. The population of this study was all the houses of residents of RW 06, Gandaria Utara Subdistrict, Kebayoran Baru, South Jakarta, namely 667 houses. The samples in this study were some residents houses that had clean water containers with a total sample of 92 houses. The sampling technique uses Proportional Simple Random Sampling.

3. RESULTS AND DISCUSSION

Of the 92 houses surveyed, 8 houses were found positive for the presence of larvae Aedes Sp. The larvae free rate (ABJ) of 91.3% in the RW 06 area, North Gandaria Village, Kebayoran Baru District, South Jakarta is below the quality standard value set based on Minister of Health Regulation no. 50 of 2017 [27], which is below 95%. Egg Aedes sp. takes 1-2 days to become larvae [26]. Routinely draining water reservoirs every five days can break the mosquito breeding chain Aedes sp.

Table 1. Relationship between Temperature and the Presence of Larvae Aedes sp. At Residents Homes RW 06 area, North Gandaria Village, Kebayoran Baru District, South Jakarta

<table>
<thead>
<tr>
<th>Temperature</th>
<th>The existence of larvae</th>
<th>Total</th>
<th>OR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>There is</td>
<td>There isn't any</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>27 °C – 30 °C</td>
<td>8</td>
<td>8,9</td>
<td>82</td>
<td>91,1</td>
</tr>
<tr>
<td>&lt;27 °C or &gt;30 °C</td>
<td>0</td>
<td>0,0</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Amount</td>
<td>8</td>
<td>8,7</td>
<td>84</td>
<td>91,3</td>
</tr>
</tbody>
</table>
Statistical test results were obtained $P$-value $= 0.659$ ($P$-value $> \alpha$, until $H_0$ is accepted), So it can be concluded that there is no relationship between water temperature and the presence of larvae Aedes Sp.. From the results of the analysis, an OR value of 0.911 was obtained, which means a water reservoir with a temperature of $27^\circ C - 30^\circ C$ has a 0.9-fold chance of having larvae Aedes Sp. compared to water reservoirs with water temperatures $<27^\circ C$ or $>30^\circ C$.

The results of research conducted by Hidayah and Rahmawati in 2019 showed that the water temperature of the brooding area was $27.6^\circ C$. This temperature is still deep range optimum temperature for larval development Aedes Sp. This is in line with the research results obtained regarding the presence of larvae Aedes Sp. only at the optimum water temperature, namely $27^\circ C - 30^\circ C$ [10]. This temperature is the ideal temperature range for the growth of Aedes sp mosquitoes [1].

The water in water reservoirs is influenced by the climate in the surrounding environment, namely air temperature and rainfall. The colder the air temperature can affect the water temperature and affect the mosquito breeding cycle Aedes Sp., and vice versa, the hotter the air temperature can affect the water temperature and mosquito breeding Aedes Sp [19].

**Table 2. Relationship between pH and the Presence of Larvae Aedes sp. At Residents Homes RW 06 area, North Gandaria Village Kebayoran Baru District, South Jakarta**

<table>
<thead>
<tr>
<th>pH</th>
<th>The existence of larvae</th>
<th>OR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>There is</td>
<td>There isn't any</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n$</td>
<td>$N$</td>
<td>$n$</td>
</tr>
<tr>
<td>6.8 – 7.2</td>
<td>8</td>
<td>9.3</td>
<td>78</td>
</tr>
<tr>
<td>&lt; 6.8 or &gt;7.2</td>
<td>0</td>
<td>0.0</td>
<td>6</td>
</tr>
<tr>
<td>Amount</td>
<td>8</td>
<td>8.7</td>
<td>84</td>
</tr>
</tbody>
</table>

Statistical test results were obtained $P$-value $= 0.434$ ($P$-value $> \alpha$, until $H_0$ is accepted), So it can be concluded that there is no relationship between water pH and the presence of larvae Aedes Sp..

From the results of the analysis, an OR value of 0.907 was obtained, which means that water reservoirs with a pH of 6.8 – 7.2 have a 0.9 times greater chance of containing larvae Aedes Sp. compared to water reservoirs with water pH $<6.8$ or $>7.2$.

The presence of larvae is related to the physical environment of the water reservoir. Water storage systems are a basic method of controlling mosquitoes Aedes Sp. Especially Temples of the Egyptians [20]. Health behavior also determines the level of success in carrying out activities to prevent and eradicate a source of disease in order to reduce the density of mosquito larvae [22].

**Table 3. Relationship between Residual Chlorine and the Presence of Larvae Aedes sp. At Residents Houses in RW 06, North Gandaria Village Kebayoran Baru District, South Jakarta**

<table>
<thead>
<tr>
<th>Residual Chlorine</th>
<th>The existence of larvae</th>
<th>Total</th>
<th>OR (95% CI)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>There is</td>
<td>There isn't any</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>&lt; 0.2</td>
<td>5</td>
<td>5,7</td>
<td>82</td>
<td>94,3</td>
</tr>
<tr>
<td>0.2 – 0.5</td>
<td>3</td>
<td>60</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Amount</td>
<td>8</td>
<td>8,7</td>
<td>84</td>
<td>91,3</td>
</tr>
</tbody>
</table>

The obtained statistical test results, with a $P$-value of $0.000 < \alpha$, led to the rejection of $H_0$, establishing a significant relationship between residual water chlorine and the presence of Aedes sp. larvae.
The analysis revealed OR value of 0.041, indicating that water reservoirs with residual chlorine <0.2 have a 0.041 times chance of not containing Aedes sp. larvae.

The selection of egg-laying locations by Aedes sp. is influenced by the presence of organic substances and ammonia. Ammonia compounds impact the olfactory nerves of Aedes sp. mosquitoes, prompting female mosquitoes to lay their eggs. The effective removal of ammonia content by chlorine in water reservoirs is a key factor, resulting in a majority of chlorine-containing water reservoirs being larva-free. Furthermore, chlorine's oxidizing properties play a crucial role in preventing mosquito eggs from hatching by destroying proteins, thereby interrupting the mosquito life cycle.

This study aligns with Sukamto's research in 2007, which identified a significant relationship (P-value 0.000) between residual chlorine and the incidence of Dengue Haemoragic Fever (DHF). These findings emphasize the management implications of maintaining adequate residual chlorine levels in water reservoirs to mitigate the presence of Aedes sp. larvae and contribute to the prevention of mosquito-borne diseases.

4. CONCLUSION

1. Despite the absence of a significant relationship between water temperature and the presence of Aedes sp. larvae (P-value=0.659), water reservoirs within the temperature range of 27°C – 30°C exhibit a 0.9-fold chance of harboring Aedes sp. larvae.

2. Similarly, no significant relationship was found between water pH and the presence of Aedes sp. larvae (P-value=0.434). However, water reservoirs maintaining a pH between 6.8 - 7.2 have a 0.9-fold chance of containing Aedes sp. larvae.

3. In contrast, a significant relationship exists between residual water chlorine and the presence of Aedes sp. larvae (P-value=0.000).

These findings highlight the importance of targeted management strategies to mitigate the risk of dengue fever in the community. To effectively combat dengue mosquito proliferation, the community is urged to implement the 3 M strategy Mechanical, Biological, and Environmental control measures. This includes practices such as sealing water reservoirs, regular drainage of clean water reservoirs (at least once every five days), and proper disposal of used items like bottles and buckets to prevent them from becoming breeding grounds for Aedes sp. mosquitoes.

REFERENCES


Strategic Management of Public Health Risks: Correlation Between Water Quality and AEDES Sp. in South Jakarta ... (Zulfia Maharani)